利用语音生产知识来改进语音识别

A. Sangwan, J. Hansen
{"title":"利用语音生产知识来改进语音识别","authors":"A. Sangwan, J. Hansen","doi":"10.1109/ASRU.2009.5373368","DOIUrl":null,"url":null,"abstract":"This study presents a novel phonological methodology for speech recognition based on phonological features (PFs) which leverages the relationship between speech phonology and phonetics. In particular, the proposed scheme estimates the likelihood of observing speech phonology given an associative lexicon. In this manner, the scheme is capable of choosing the most likely hypothesis (word candidate) among a group of competing alternative hypotheses. The framework employs the Maximum Entropy (ME) model to learn the relationship between phonetics and phonology. Subsequently, we extend the ME model to a ME-HMM (maximum entropy-hidden Markov model) which captures the speech production and linguistic relationship between phonology and words. The proposed ME-HMM model is applied to the task of re-processing N-best lists where an absolute WRA (word recognition rate) increase of 1.7%, 1.9% and 1% are reported for TIMIT, NTIMIT, and the SPINE (speech in noise) corpora (15.5% and 22.5% relative reduction in word error rate for TIMIT and NTIMIT).","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Leveraging speech production knowledge for improved speech recognition\",\"authors\":\"A. Sangwan, J. Hansen\",\"doi\":\"10.1109/ASRU.2009.5373368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a novel phonological methodology for speech recognition based on phonological features (PFs) which leverages the relationship between speech phonology and phonetics. In particular, the proposed scheme estimates the likelihood of observing speech phonology given an associative lexicon. In this manner, the scheme is capable of choosing the most likely hypothesis (word candidate) among a group of competing alternative hypotheses. The framework employs the Maximum Entropy (ME) model to learn the relationship between phonetics and phonology. Subsequently, we extend the ME model to a ME-HMM (maximum entropy-hidden Markov model) which captures the speech production and linguistic relationship between phonology and words. The proposed ME-HMM model is applied to the task of re-processing N-best lists where an absolute WRA (word recognition rate) increase of 1.7%, 1.9% and 1% are reported for TIMIT, NTIMIT, and the SPINE (speech in noise) corpora (15.5% and 22.5% relative reduction in word error rate for TIMIT and NTIMIT).\",\"PeriodicalId\":292194,\"journal\":{\"name\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2009.5373368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究提出了一种基于语音特征(PFs)的语音识别方法,该方法利用语音音系和语音学之间的关系。特别地,所提出的方案估计了给定联想词汇观察语音音系的可能性。通过这种方式,该方案能够从一组相互竞争的备选假设中选择最可能的假设(候选词)。该框架采用最大熵模型来学习语音和音系之间的关系。随后,我们将ME模型扩展到ME- hmm(最大熵隐马尔可夫模型),该模型捕获语音产生以及音系和单词之间的语言关系。将所提出的ME-HMM模型应用于重新处理n个最佳列表的任务,其中TIMIT、NTIMIT和SPINE(噪声语音)语料库的绝对WRA(词识别率)分别提高了1.7%、1.9%和1% (TIMIT和NTIMIT的词错误率相对降低了15.5%和22.5%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging speech production knowledge for improved speech recognition
This study presents a novel phonological methodology for speech recognition based on phonological features (PFs) which leverages the relationship between speech phonology and phonetics. In particular, the proposed scheme estimates the likelihood of observing speech phonology given an associative lexicon. In this manner, the scheme is capable of choosing the most likely hypothesis (word candidate) among a group of competing alternative hypotheses. The framework employs the Maximum Entropy (ME) model to learn the relationship between phonetics and phonology. Subsequently, we extend the ME model to a ME-HMM (maximum entropy-hidden Markov model) which captures the speech production and linguistic relationship between phonology and words. The proposed ME-HMM model is applied to the task of re-processing N-best lists where an absolute WRA (word recognition rate) increase of 1.7%, 1.9% and 1% are reported for TIMIT, NTIMIT, and the SPINE (speech in noise) corpora (15.5% and 22.5% relative reduction in word error rate for TIMIT and NTIMIT).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of OOV words by combining acoustic confidence measures with linguistic features Automatic translation from parallel speech: Simultaneous interpretation as MT training data Local and global models for spontaneous speech segment detection and characterization Automatic punctuation generation for speech Response timing generation and response type selection for a spontaneous spoken dialog system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1