基于哈希码和空间金字塔的图像分类

Peng Tian-qiang, Li Fang
{"title":"基于哈希码和空间金字塔的图像分类","authors":"Peng Tian-qiang, Li Fang","doi":"10.1109/IMCEC.2016.7867183","DOIUrl":null,"url":null,"abstract":"Sparse Coding is a widely used method to represent an image. However, sparse coding and its improved algorithms have the problem of complex computation and long running time and so on. For these problems, we propose an image classification method based on hash codes and space pyramid, which encodes local feature points with hash codes instead of sparse coding. Firstly, extract the local feature points from the images. Second, learn binary auto-encoder hashing functions, which map the local feature points into hash codes. Third, perform binary k-means cluster on the binary hash codes and generate the binary visual vocabularies. Finally, Combine with spatial pyramid matching model, and represent the image by the histogram vector of space pyramid, which is used in image classification. Experimental results show that compared with other sparse coding methods, our method has the shorter time of learning vocabularies and faster encoder speed and higher classification accuracy.","PeriodicalId":218222,"journal":{"name":"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image classification based on hash codes and space pyramid\",\"authors\":\"Peng Tian-qiang, Li Fang\",\"doi\":\"10.1109/IMCEC.2016.7867183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse Coding is a widely used method to represent an image. However, sparse coding and its improved algorithms have the problem of complex computation and long running time and so on. For these problems, we propose an image classification method based on hash codes and space pyramid, which encodes local feature points with hash codes instead of sparse coding. Firstly, extract the local feature points from the images. Second, learn binary auto-encoder hashing functions, which map the local feature points into hash codes. Third, perform binary k-means cluster on the binary hash codes and generate the binary visual vocabularies. Finally, Combine with spatial pyramid matching model, and represent the image by the histogram vector of space pyramid, which is used in image classification. Experimental results show that compared with other sparse coding methods, our method has the shorter time of learning vocabularies and faster encoder speed and higher classification accuracy.\",\"PeriodicalId\":218222,\"journal\":{\"name\":\"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCEC.2016.7867183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCEC.2016.7867183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

稀疏编码是一种广泛使用的图像表示方法。然而,稀疏编码及其改进算法存在计算量大、运行时间长等问题。针对这些问题,我们提出了一种基于哈希码和空间金字塔的图像分类方法,用哈希码代替稀疏编码对局部特征点进行编码。首先,从图像中提取局部特征点;其次,学习二进制自编码器哈希函数,它将局部特征点映射到哈希码中。第三,对二进制哈希码进行二进制k-means聚类,生成二进制视觉词汇表。最后,结合空间金字塔匹配模型,用空间金字塔直方图向量表示图像,用于图像分类。实验结果表明,与其他稀疏编码方法相比,我们的方法学习词汇的时间更短,编码器速度更快,分类精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image classification based on hash codes and space pyramid
Sparse Coding is a widely used method to represent an image. However, sparse coding and its improved algorithms have the problem of complex computation and long running time and so on. For these problems, we propose an image classification method based on hash codes and space pyramid, which encodes local feature points with hash codes instead of sparse coding. Firstly, extract the local feature points from the images. Second, learn binary auto-encoder hashing functions, which map the local feature points into hash codes. Third, perform binary k-means cluster on the binary hash codes and generate the binary visual vocabularies. Finally, Combine with spatial pyramid matching model, and represent the image by the histogram vector of space pyramid, which is used in image classification. Experimental results show that compared with other sparse coding methods, our method has the shorter time of learning vocabularies and faster encoder speed and higher classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance path following for UAV based on advanced vector field guidance law Design of autonomous underwater vehicle positioning system Temperature field simulation of herringbone grooved bearing based on FLUENT software Docker based overlay network performance evaluation in large scale streaming system Multi-channel automatic calibration system of pressure sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1