基于网络边缘推理的高维数据特征渐进式传输

Qiao Lan, Qunsong Zeng, P. Popovski, Deniz Gündüz, Kaibin Huang
{"title":"基于网络边缘推理的高维数据特征渐进式传输","authors":"Qiao Lan, Qunsong Zeng, P. Popovski, Deniz Gündüz, Kaibin Huang","doi":"10.1109/spawc51304.2022.9834000","DOIUrl":null,"url":null,"abstract":"Uploading high-dimensional features from edge devices to an edge server over wireless channels creates a communication bottleneck for edge inference. To tackle the challenge, we propose the progressive feature transmission (ProgressFTX) protocol, which minimizes the overhead by progressively transmitting features until a target confidence level is reached. The control of the protocol to accelerate inference is designed with two key operations. The first, importance-aware feature selection, guides the server to select the most discriminative feature dimensions. The second is transmission-termination control such that the feature transmission is stopped when the incremental uncertainty reduction by further transmission is outweighed by its communication cost. The indices of the selected features and transmission decision are fed back to the device in each slot. The sub-optimal policy is obtained for classification using a convolutional neural network. Experimental results on a real-world dataset shows that ProgressFTX can substantially reduce the communication latency compared to conventional feature pruning and random feature transmission.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive Transmission of High-Dimensional Data Features for Inference at the Network Edge\",\"authors\":\"Qiao Lan, Qunsong Zeng, P. Popovski, Deniz Gündüz, Kaibin Huang\",\"doi\":\"10.1109/spawc51304.2022.9834000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uploading high-dimensional features from edge devices to an edge server over wireless channels creates a communication bottleneck for edge inference. To tackle the challenge, we propose the progressive feature transmission (ProgressFTX) protocol, which minimizes the overhead by progressively transmitting features until a target confidence level is reached. The control of the protocol to accelerate inference is designed with two key operations. The first, importance-aware feature selection, guides the server to select the most discriminative feature dimensions. The second is transmission-termination control such that the feature transmission is stopped when the incremental uncertainty reduction by further transmission is outweighed by its communication cost. The indices of the selected features and transmission decision are fed back to the device in each slot. The sub-optimal policy is obtained for classification using a convolutional neural network. Experimental results on a real-world dataset shows that ProgressFTX can substantially reduce the communication latency compared to conventional feature pruning and random feature transmission.\",\"PeriodicalId\":423807,\"journal\":{\"name\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spawc51304.2022.9834000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc51304.2022.9834000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过无线通道将高维特征从边缘设备上传到边缘服务器,会给边缘推断带来通信瓶颈。为了解决这一挑战,我们提出了渐进式特征传输(ProgressFTX)协议,该协议通过渐进式传输特征直到达到目标置信度来最小化开销。通过两个关键操作来设计协议的控制以加速推理。第一个是重要性感知特征选择,它引导服务器选择最具区别性的特征维度。第二种是传输终止控制,即当进一步传输所减少的增量不确定性超过其通信成本时,特征传输停止。所选特征的指标和传输决策反馈到每个插槽中的设备。利用卷积神经网络得到次优分类策略。在真实数据集上的实验结果表明,与传统的特征修剪和随机特征传输相比,ProgressFTX可以显著降低通信延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progressive Transmission of High-Dimensional Data Features for Inference at the Network Edge
Uploading high-dimensional features from edge devices to an edge server over wireless channels creates a communication bottleneck for edge inference. To tackle the challenge, we propose the progressive feature transmission (ProgressFTX) protocol, which minimizes the overhead by progressively transmitting features until a target confidence level is reached. The control of the protocol to accelerate inference is designed with two key operations. The first, importance-aware feature selection, guides the server to select the most discriminative feature dimensions. The second is transmission-termination control such that the feature transmission is stopped when the incremental uncertainty reduction by further transmission is outweighed by its communication cost. The indices of the selected features and transmission decision are fed back to the device in each slot. The sub-optimal policy is obtained for classification using a convolutional neural network. Experimental results on a real-world dataset shows that ProgressFTX can substantially reduce the communication latency compared to conventional feature pruning and random feature transmission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Multi-Antenna Coded Caching Deep Transfer Learning Based Radio Map Estimation for Indoor Wireless Communications A New Outage Probability Bound for IR-HARQ and Its Application to Power Adaptation SPAWC 2022 Cover Page A Sequential Experience-driven Contextual Bandit Policy for MIMO TWAF Online Relay Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1