多维闪光码

Eitan Yaakobi, A. Vardy, P. Siegel, J. Wolf
{"title":"多维闪光码","authors":"Eitan Yaakobi, A. Vardy, P. Siegel, J. Wolf","doi":"10.1109/ALLERTON.2008.4797584","DOIUrl":null,"url":null,"abstract":"Flash memory is a non-volatile computer memory comprised of blocks of cells, wherein each cell can take on q different levels corresponding to the number of electrons it contains. Increasing the cell level is easy; however, reducing a cell level forces all the other cells in the same block to be erased. This erasing operation is undesirable and therefore has to be used as infrequently as possible. We consider the problem of designing codes for this purpose, where k bits are stored using a block of n cells with q levels each. The goal is to maximize the number of bit writes before an erase operation is required. We present an efficient construction of codes that can store an arbitrary number of bits. Our construction can be viewed as an extension to multiple dimensions of the earlier work of Jiang and Bruck, where single-dimensional codes that can store only 2 bits were proposed.","PeriodicalId":120561,"journal":{"name":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Multidimensional flash codes\",\"authors\":\"Eitan Yaakobi, A. Vardy, P. Siegel, J. Wolf\",\"doi\":\"10.1109/ALLERTON.2008.4797584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flash memory is a non-volatile computer memory comprised of blocks of cells, wherein each cell can take on q different levels corresponding to the number of electrons it contains. Increasing the cell level is easy; however, reducing a cell level forces all the other cells in the same block to be erased. This erasing operation is undesirable and therefore has to be used as infrequently as possible. We consider the problem of designing codes for this purpose, where k bits are stored using a block of n cells with q levels each. The goal is to maximize the number of bit writes before an erase operation is required. We present an efficient construction of codes that can store an arbitrary number of bits. Our construction can be viewed as an extension to multiple dimensions of the earlier work of Jiang and Bruck, where single-dimensional codes that can store only 2 bits were proposed.\",\"PeriodicalId\":120561,\"journal\":{\"name\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2008.4797584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2008.4797584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

闪存是一种由单元块组成的非易失性计算机存储器,其中每个单元可以具有q个不同的级别,对应于它所包含的电子数量。增加细胞水平很容易;但是,减少单元级别会强制擦除同一块中的所有其他单元。这种擦除操作是不可取的,因此必须尽可能少地使用。我们考虑为此目的设计代码的问题,其中k位使用n个单元的块存储,每个单元有q个级别。目标是在需要擦除操作之前最大化写比特的数量。我们提出了一种有效的编码结构,可以存储任意数量的比特。我们的构建可以看作是Jiang和Bruck早期工作的多维扩展,他们提出了只能存储2位的单维代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multidimensional flash codes
Flash memory is a non-volatile computer memory comprised of blocks of cells, wherein each cell can take on q different levels corresponding to the number of electrons it contains. Increasing the cell level is easy; however, reducing a cell level forces all the other cells in the same block to be erased. This erasing operation is undesirable and therefore has to be used as infrequently as possible. We consider the problem of designing codes for this purpose, where k bits are stored using a block of n cells with q levels each. The goal is to maximize the number of bit writes before an erase operation is required. We present an efficient construction of codes that can store an arbitrary number of bits. Our construction can be viewed as an extension to multiple dimensions of the earlier work of Jiang and Bruck, where single-dimensional codes that can store only 2 bits were proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning sparse doubly-selective channels Ergodic two-user interference channels: Is separability optimal? Weight distribution of codes on hypergraphs Compound multiple access channels with conferencing decoders Transmission techniques for relay-interference networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1