运动目标跟踪-一种参数化边缘跟踪方法

M. Murshed, M. Ali, Akber Dewan, O. Chae
{"title":"运动目标跟踪-一种参数化边缘跟踪方法","authors":"M. Murshed, M. Ali, Akber Dewan, O. Chae","doi":"10.1109/ICCIT.2009.5407285","DOIUrl":null,"url":null,"abstract":"In this paper, an edge based tracking algorithm is proposed. Our algorithm makes efficient use of edge-segment on the Canny edge map by utilizing the edge structure in the moving object region. Curvature-based features are used for moving edge registration. We use the maximum curvature correspondences between two edge segments then the 2D affine transformation computes their movement by solving a system of linear equations. The registration error is then minimized. A Kalman Filter is used to track each individual edge segments. Segments are clustered using a k-mean algorithm. Finally, a group motion tracker is used for tracking moving object from each cluster. Experiments show that our edge-segment based tracking algorithm can track moving objects efficiently under varying illumination conditions.","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Moving object tracking - a parametric edge tracking approach\",\"authors\":\"M. Murshed, M. Ali, Akber Dewan, O. Chae\",\"doi\":\"10.1109/ICCIT.2009.5407285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an edge based tracking algorithm is proposed. Our algorithm makes efficient use of edge-segment on the Canny edge map by utilizing the edge structure in the moving object region. Curvature-based features are used for moving edge registration. We use the maximum curvature correspondences between two edge segments then the 2D affine transformation computes their movement by solving a system of linear equations. The registration error is then minimized. A Kalman Filter is used to track each individual edge segments. Segments are clustered using a k-mean algorithm. Finally, a group motion tracker is used for tracking moving object from each cluster. Experiments show that our edge-segment based tracking algorithm can track moving objects efficiently under varying illumination conditions.\",\"PeriodicalId\":443258,\"journal\":{\"name\":\"2009 12th International Conference on Computers and Information Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 12th International Conference on Computers and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT.2009.5407285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.5407285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种基于边缘的跟踪算法。该算法通过利用运动目标区域的边缘结构,有效地利用了Canny边缘图上的边缘段。基于曲率的特征用于移动边缘配准。我们使用两个边缘段之间的最大曲率对应,然后二维仿射变换通过求解线性方程组来计算它们的运动。然后最小化配准误差。卡尔曼滤波器用于跟踪每个单独的边缘段。使用k-均值算法对片段进行聚类。最后,利用群运动跟踪器对每个簇中的运动目标进行跟踪。实验表明,基于边缘段的跟踪算法可以在不同光照条件下有效地跟踪运动目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Moving object tracking - a parametric edge tracking approach
In this paper, an edge based tracking algorithm is proposed. Our algorithm makes efficient use of edge-segment on the Canny edge map by utilizing the edge structure in the moving object region. Curvature-based features are used for moving edge registration. We use the maximum curvature correspondences between two edge segments then the 2D affine transformation computes their movement by solving a system of linear equations. The registration error is then minimized. A Kalman Filter is used to track each individual edge segments. Segments are clustered using a k-mean algorithm. Finally, a group motion tracker is used for tracking moving object from each cluster. Experiments show that our edge-segment based tracking algorithm can track moving objects efficiently under varying illumination conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content clustering of Computer Mediated Courseware using data mining technique An audible Bangla text-entry method in Mobile phones with intelligent keypad Design of meandering probe fed microstrip patch antenna for wireless communication system Can Information Retrieval techniques automatic assessment challenges? Logical clock based Last Update Consistency model for Distributed Shared Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1