语义深度人脸模型

P. Chandran, D. Bradley, M. Gross, T. Beeler
{"title":"语义深度人脸模型","authors":"P. Chandran, D. Bradley, M. Gross, T. Beeler","doi":"10.1109/3DV50981.2020.00044","DOIUrl":null,"url":null,"abstract":"Face models built from 3D face databases are often used in computer vision and graphics tasks such as face reconstruction, replacement, tracking and manipulation. For such tasks, commonly used multi-linear morphable models, which provide semantic control over facial identity and expression, often lack quality and expressivity due to their linear nature. Deep neural networks offer the possibility of non-linear face modeling, where so far most research has focused on generating realistic facial images with less focus on 3D geometry, and methods that do produce geometry have little or no notion of semantic control, thereby limiting their artistic applicability. We present a method for nonlinear 3D face modeling using neural architectures that provides intuitive semantic control over both identity and expression by disentangling these dimensions from each other, essentially combining the benefits of both multi-linear face models and nonlinear deep face networks. The result is a powerful, semantically controllable, nonlinear, parametric face model. We demonstrate the value of our semantic deep face model with applications of 3D face synthesis, facial performance transfer, performance editing, and 2D landmark-based performance retargeting.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Semantic Deep Face Models\",\"authors\":\"P. Chandran, D. Bradley, M. Gross, T. Beeler\",\"doi\":\"10.1109/3DV50981.2020.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face models built from 3D face databases are often used in computer vision and graphics tasks such as face reconstruction, replacement, tracking and manipulation. For such tasks, commonly used multi-linear morphable models, which provide semantic control over facial identity and expression, often lack quality and expressivity due to their linear nature. Deep neural networks offer the possibility of non-linear face modeling, where so far most research has focused on generating realistic facial images with less focus on 3D geometry, and methods that do produce geometry have little or no notion of semantic control, thereby limiting their artistic applicability. We present a method for nonlinear 3D face modeling using neural architectures that provides intuitive semantic control over both identity and expression by disentangling these dimensions from each other, essentially combining the benefits of both multi-linear face models and nonlinear deep face networks. The result is a powerful, semantically controllable, nonlinear, parametric face model. We demonstrate the value of our semantic deep face model with applications of 3D face synthesis, facial performance transfer, performance editing, and 2D landmark-based performance retargeting.\",\"PeriodicalId\":293399,\"journal\":{\"name\":\"2020 International Conference on 3D Vision (3DV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on 3D Vision (3DV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV50981.2020.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV50981.2020.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

从三维人脸数据库建立的人脸模型经常用于计算机视觉和图形任务,如人脸重建、替换、跟踪和操作。对于此类任务,通常使用的多线性变形模型提供了对面部身份和表情的语义控制,但由于其线性特性,往往缺乏质量和表现力。深度神经网络提供了非线性面部建模的可能性,到目前为止,大多数研究都集中在生成逼真的面部图像上,而对3D几何图形的关注较少,而生成几何图形的方法很少或根本没有语义控制的概念,从而限制了它们的艺术适用性。我们提出了一种使用神经结构进行非线性三维人脸建模的方法,该方法通过将这些维度相互分离来提供对身份和表达的直观语义控制,本质上结合了多线性人脸模型和非线性深度人脸网络的优点。结果是一个强大的、语义可控的、非线性的、参数化的人脸模型。我们通过应用3D人脸合成、面部性能转移、性能编辑和基于2D地标的性能重定向来展示我们的语义深度人脸模型的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic Deep Face Models
Face models built from 3D face databases are often used in computer vision and graphics tasks such as face reconstruction, replacement, tracking and manipulation. For such tasks, commonly used multi-linear morphable models, which provide semantic control over facial identity and expression, often lack quality and expressivity due to their linear nature. Deep neural networks offer the possibility of non-linear face modeling, where so far most research has focused on generating realistic facial images with less focus on 3D geometry, and methods that do produce geometry have little or no notion of semantic control, thereby limiting their artistic applicability. We present a method for nonlinear 3D face modeling using neural architectures that provides intuitive semantic control over both identity and expression by disentangling these dimensions from each other, essentially combining the benefits of both multi-linear face models and nonlinear deep face networks. The result is a powerful, semantically controllable, nonlinear, parametric face model. We demonstrate the value of our semantic deep face model with applications of 3D face synthesis, facial performance transfer, performance editing, and 2D landmark-based performance retargeting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Screen-space Regularization on Differentiable Rasterization Motion Annotation Programs: A Scalable Approach to Annotating Kinematic Articulations in Large 3D Shape Collections Two-Stage Relation Constraint for Semantic Segmentation of Point Clouds Time Shifted IMU Preintegration for Temporal Calibration in Incremental Visual-Inertial Initialization KeystoneDepth: History in 3D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1