迭代图网络

Wenchuan Zhang, Weihua Ou, Shili Niu, Ruxin Wang, Ziqi Zhu, Shen Ke
{"title":"迭代图网络","authors":"Wenchuan Zhang, Weihua Ou, Shili Niu, Ruxin Wang, Ziqi Zhu, Shen Ke","doi":"10.1109/ICCSS53909.2021.9721961","DOIUrl":null,"url":null,"abstract":"Graph neural networks are widespreadly used in the field of graph data analysis and processing. Recent methods either reduce the spatial receptive field for low algorithm complexity, or greatly lose efficiency in order to realize attention mechanism. To tackle this issue, we propose Iteration Graph Network (IGN), which uses an iterative inversion method to aggregate node feature and the k-localized neighbor information of nodes. In the graph-based semi-supervised node classification task, our method surpasses the state-of-the-art method in the benchmark datasets and experiment conclusion show that our model outperforms graph attention networks (GAT) and is more than 3 times faster than graph attention networks, consumes more than 6 times less memory than GAT. Our code will be make publicly available.","PeriodicalId":435816,"journal":{"name":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iteration Graph Network\",\"authors\":\"Wenchuan Zhang, Weihua Ou, Shili Niu, Ruxin Wang, Ziqi Zhu, Shen Ke\",\"doi\":\"10.1109/ICCSS53909.2021.9721961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph neural networks are widespreadly used in the field of graph data analysis and processing. Recent methods either reduce the spatial receptive field for low algorithm complexity, or greatly lose efficiency in order to realize attention mechanism. To tackle this issue, we propose Iteration Graph Network (IGN), which uses an iterative inversion method to aggregate node feature and the k-localized neighbor information of nodes. In the graph-based semi-supervised node classification task, our method surpasses the state-of-the-art method in the benchmark datasets and experiment conclusion show that our model outperforms graph attention networks (GAT) and is more than 3 times faster than graph attention networks, consumes more than 6 times less memory than GAT. Our code will be make publicly available.\",\"PeriodicalId\":435816,\"journal\":{\"name\":\"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSS53909.2021.9721961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSS53909.2021.9721961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图神经网络广泛应用于图数据分析和处理领域。现有的方法或为了降低算法复杂度而减少空间接受场,或为了实现注意机制而大大降低效率。为了解决这一问题,我们提出了迭代图网络(IGN),它使用迭代反演的方法来聚合节点特征和节点的k局部化邻居信息。在基于图的半监督节点分类任务中,我们的方法在基准数据集上优于最先进的方法,实验结论表明,我们的模型优于图注意网络(GAT),速度比图注意网络快3倍以上,消耗的内存比GAT少6倍以上。我们的代码将会公开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iteration Graph Network
Graph neural networks are widespreadly used in the field of graph data analysis and processing. Recent methods either reduce the spatial receptive field for low algorithm complexity, or greatly lose efficiency in order to realize attention mechanism. To tackle this issue, we propose Iteration Graph Network (IGN), which uses an iterative inversion method to aggregate node feature and the k-localized neighbor information of nodes. In the graph-based semi-supervised node classification task, our method surpasses the state-of-the-art method in the benchmark datasets and experiment conclusion show that our model outperforms graph attention networks (GAT) and is more than 3 times faster than graph attention networks, consumes more than 6 times less memory than GAT. Our code will be make publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Prediction Model of Key Personnel's Food Crime Based on Stacking Model Fusion A Multidimensional System Architecture Oriented to the Data Space of Manufacturing Enterprises Semi-Supervised Deep Clustering with Soft Membership Affinity Moving Target Shooting Control Policy Based on Deep Reinforcement Learning Prediction of ship fuel consumption based on Elastic network regression model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1