基于遗传算法的配电网分布式发电优化分配与规模研究

H. Talaat, E. Al-Ammar
{"title":"基于遗传算法的配电网分布式发电优化分配与规模研究","authors":"H. Talaat, E. Al-Ammar","doi":"10.1109/EPQU.2011.6128840","DOIUrl":null,"url":null,"abstract":"This paper addresses the optimization problem of integration of Distributed Generation (DG) in distribution networks. Three Genetic Algorithms (GAs) have been developed to minimize the power losses of the system. The First GA enables the optimal sizing of the DG units given their locations. Alternatively, the second GA determines the optimal locations of the DG units assuming equal sizes of the units. The third GA enables the determination of both optimal sizes, on discrete values, and optimal locations. The results prove the effectiveness of the developed genetic algorithms in finding the optimal penetration level and optimal locations and sizes of the DG units to yield minimum losses of the system.","PeriodicalId":369941,"journal":{"name":"11th International Conference on Electrical Power Quality and Utilisation","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Optimal allocation and sizing of Distributed Generation in distribution networks using Genetic Algorithms\",\"authors\":\"H. Talaat, E. Al-Ammar\",\"doi\":\"10.1109/EPQU.2011.6128840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the optimization problem of integration of Distributed Generation (DG) in distribution networks. Three Genetic Algorithms (GAs) have been developed to minimize the power losses of the system. The First GA enables the optimal sizing of the DG units given their locations. Alternatively, the second GA determines the optimal locations of the DG units assuming equal sizes of the units. The third GA enables the determination of both optimal sizes, on discrete values, and optimal locations. The results prove the effectiveness of the developed genetic algorithms in finding the optimal penetration level and optimal locations and sizes of the DG units to yield minimum losses of the system.\",\"PeriodicalId\":369941,\"journal\":{\"name\":\"11th International Conference on Electrical Power Quality and Utilisation\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th International Conference on Electrical Power Quality and Utilisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPQU.2011.6128840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th International Conference on Electrical Power Quality and Utilisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPQU.2011.6128840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

本文研究了配电网中分布式发电(DG)集成的优化问题。为了最大限度地降低系统的功率损耗,开发了三种遗传算法(GAs)。第一遗传算法使DG单元的最佳尺寸给定其位置。或者,第二个遗传算法在假设DG单元大小相等的情况下确定DG单元的最佳位置。第三种遗传算法能够确定离散值的最佳尺寸和最佳位置。结果表明,所提出的遗传算法能够有效地确定DG单元的最优渗透水平、最优位置和最优尺寸,从而使系统损失最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal allocation and sizing of Distributed Generation in distribution networks using Genetic Algorithms
This paper addresses the optimization problem of integration of Distributed Generation (DG) in distribution networks. Three Genetic Algorithms (GAs) have been developed to minimize the power losses of the system. The First GA enables the optimal sizing of the DG units given their locations. Alternatively, the second GA determines the optimal locations of the DG units assuming equal sizes of the units. The third GA enables the determination of both optimal sizes, on discrete values, and optimal locations. The results prove the effectiveness of the developed genetic algorithms in finding the optimal penetration level and optimal locations and sizes of the DG units to yield minimum losses of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Specialist tool for monitoring the measurement degradation process of induction active energy meters Harmonic propagation analysis in electric energy distribution systems Generation of high resolution wind speeds and wind speed arrays inside a wind farm based on real site data Novel data-driven methodologies for parameter estimation and interpretation of fuel cells performance Modelling of electric vehicle chargers for power system analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1