多特征分类器及其在图像分类中的应用

Dong-Chul Park
{"title":"多特征分类器及其在图像分类中的应用","authors":"Dong-Chul Park","doi":"10.1109/ICDMW.2010.82","DOIUrl":null,"url":null,"abstract":"A new image classification method with multiple feature-based classifier (MFC) is proposed in this paper. MFC does not use the entire feature vectors extracted from the original data in a concatenated form to classify each datum, but rather uses groups of features related to each feature vector separately. In the training stage, a confusion table calculated from each local classifier that uses a specific feature vector group is drawn throughout the accuracy of each local classifier and then, in the testing stage, the final classification result is obtained by applying weights corresponding to the confidence level of each local classifier. The proposed MFC algorithm is applied to the problem of image classification on a set of image data. The results demonstrate that the proposed MFC scheme can optimally enhance the classification accuracy of individual classifiers that use specific feature vector group.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Multiple Feature-Based Classifier and Its Application to Image Classification\",\"authors\":\"Dong-Chul Park\",\"doi\":\"10.1109/ICDMW.2010.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new image classification method with multiple feature-based classifier (MFC) is proposed in this paper. MFC does not use the entire feature vectors extracted from the original data in a concatenated form to classify each datum, but rather uses groups of features related to each feature vector separately. In the training stage, a confusion table calculated from each local classifier that uses a specific feature vector group is drawn throughout the accuracy of each local classifier and then, in the testing stage, the final classification result is obtained by applying weights corresponding to the confidence level of each local classifier. The proposed MFC algorithm is applied to the problem of image classification on a set of image data. The results demonstrate that the proposed MFC scheme can optimally enhance the classification accuracy of individual classifiers that use specific feature vector group.\",\"PeriodicalId\":170201,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining Workshops\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2010.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种基于多特征分类器(MFC)的图像分类方法。MFC不使用从原始数据中提取的整个特征向量以串联的形式对每个数据进行分类,而是单独使用与每个特征向量相关的特征组。在训练阶段,通过每个局部分类器的准确率绘制出使用特定特征向量组的每个局部分类器计算出的混淆表,然后在测试阶段,通过对每个局部分类器的置信度应用相应的权重得到最终的分类结果。将该算法应用于一组图像数据上的图像分类问题。结果表明,所提出的MFC方案可以最优地提高使用特定特征向量组的单个分类器的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Feature-Based Classifier and Its Application to Image Classification
A new image classification method with multiple feature-based classifier (MFC) is proposed in this paper. MFC does not use the entire feature vectors extracted from the original data in a concatenated form to classify each datum, but rather uses groups of features related to each feature vector separately. In the training stage, a confusion table calculated from each local classifier that uses a specific feature vector group is drawn throughout the accuracy of each local classifier and then, in the testing stage, the final classification result is obtained by applying weights corresponding to the confidence level of each local classifier. The proposed MFC algorithm is applied to the problem of image classification on a set of image data. The results demonstrate that the proposed MFC scheme can optimally enhance the classification accuracy of individual classifiers that use specific feature vector group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Path Integral Inspired Query Sequence Suggestion for User Search Task Simplification PTCR-Miner: Progressive Temporal Class Rule Mining for Multivariate Temporal Data Classification Bridging Folksonomies and Domain Ontologies: Getting Out Non-taxonomic Relations SIMPLE: Interactive Analytics on Patent Data Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1