{"title":"5G低太赫兹频段通信中基于六边形网格的人为阻塞模型","authors":"Onur Erturk, T. Yilmaz","doi":"10.1109/5GWF.2018.8516978","DOIUrl":null,"url":null,"abstract":"Users continuously demand higher connection speeds and data traffic from wireless communication networks. The newly required network capacity should be provided by higher frequency bands, because legacy sub-6 GHz bands are already operating using advanced communication techniques that provide very high spectral efficiencies. Consequently, millimeter wave communication standards are either complete or ongoing, and general submillimeter wave applications are next in line. Accordingly, this paper proposes a motion model in hexagonal grid of a person carrying a user equipment. Electromagnetic wave blockage analyses by utilizing channel characteristics of the low-THz band are presented. Lastly, the communication and blockage probabilities of an exemplary system are both theoretically examined and numerically simulated.","PeriodicalId":440445,"journal":{"name":"2018 IEEE 5G World Forum (5GWF)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Hexagonal Grid Based Human Blockage Model for the 5G Low Terahertz Band Communications\",\"authors\":\"Onur Erturk, T. Yilmaz\",\"doi\":\"10.1109/5GWF.2018.8516978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Users continuously demand higher connection speeds and data traffic from wireless communication networks. The newly required network capacity should be provided by higher frequency bands, because legacy sub-6 GHz bands are already operating using advanced communication techniques that provide very high spectral efficiencies. Consequently, millimeter wave communication standards are either complete or ongoing, and general submillimeter wave applications are next in line. Accordingly, this paper proposes a motion model in hexagonal grid of a person carrying a user equipment. Electromagnetic wave blockage analyses by utilizing channel characteristics of the low-THz band are presented. Lastly, the communication and blockage probabilities of an exemplary system are both theoretically examined and numerically simulated.\",\"PeriodicalId\":440445,\"journal\":{\"name\":\"2018 IEEE 5G World Forum (5GWF)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 5G World Forum (5GWF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/5GWF.2018.8516978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5G World Forum (5GWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/5GWF.2018.8516978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hexagonal Grid Based Human Blockage Model for the 5G Low Terahertz Band Communications
Users continuously demand higher connection speeds and data traffic from wireless communication networks. The newly required network capacity should be provided by higher frequency bands, because legacy sub-6 GHz bands are already operating using advanced communication techniques that provide very high spectral efficiencies. Consequently, millimeter wave communication standards are either complete or ongoing, and general submillimeter wave applications are next in line. Accordingly, this paper proposes a motion model in hexagonal grid of a person carrying a user equipment. Electromagnetic wave blockage analyses by utilizing channel characteristics of the low-THz band are presented. Lastly, the communication and blockage probabilities of an exemplary system are both theoretically examined and numerically simulated.