基于储能阻尼控制器的抗绕组补偿设计,提高电力系统稳定性

Jiakun Fang, W. Yao, Zhe Chen, J. Wen, Shijie Cheng
{"title":"基于储能阻尼控制器的抗绕组补偿设计,提高电力系统稳定性","authors":"Jiakun Fang, W. Yao, Zhe Chen, J. Wen, Shijie Cheng","doi":"10.1109/PESGM.2015.7286390","DOIUrl":null,"url":null,"abstract":"The application of energy storage (ES) in power system is limited due to the high cost of the ES device, which exponentially increases with its capacity. This paper is to improve the saturation-dependent stability of the power system equipped with the energy storage based damping controller (ESDC), and hence, reduce the required size of the ES. The phenomenon that the capacity of ES is smaller than the required value produced by the ESDC, is modeled as actuator saturation using the saturation function. The proposed method is to design an anti-windup compensator (AWC), which in the event of saturation, produces a signal based on the output difference between the ESDC and saturated ES and then augment the signal to the ESDC to alleviate the adverse effect of saturation. The AWC is designed with the reduced- order model of power system and linear matrix inequality. Detailed design procedure is introduced. Case studies based on a modified 4-machine 2-area power system and 10-machine New England power system are carried out to demonstrate the effectiveness of the AWC design method.","PeriodicalId":423639,"journal":{"name":"2015 IEEE Power & Energy Society General Meeting","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of anti-windup compensation for energy storage based damping controller to enhance power system stability\",\"authors\":\"Jiakun Fang, W. Yao, Zhe Chen, J. Wen, Shijie Cheng\",\"doi\":\"10.1109/PESGM.2015.7286390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of energy storage (ES) in power system is limited due to the high cost of the ES device, which exponentially increases with its capacity. This paper is to improve the saturation-dependent stability of the power system equipped with the energy storage based damping controller (ESDC), and hence, reduce the required size of the ES. The phenomenon that the capacity of ES is smaller than the required value produced by the ESDC, is modeled as actuator saturation using the saturation function. The proposed method is to design an anti-windup compensator (AWC), which in the event of saturation, produces a signal based on the output difference between the ESDC and saturated ES and then augment the signal to the ESDC to alleviate the adverse effect of saturation. The AWC is designed with the reduced- order model of power system and linear matrix inequality. Detailed design procedure is introduced. Case studies based on a modified 4-machine 2-area power system and 10-machine New England power system are carried out to demonstrate the effectiveness of the AWC design method.\",\"PeriodicalId\":423639,\"journal\":{\"name\":\"2015 IEEE Power & Energy Society General Meeting\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Power & Energy Society General Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM.2015.7286390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2015.7286390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于储能装置的成本高,储能容量呈指数级增长,限制了储能技术在电力系统中的应用。本文的目的是提高基于储能阻尼控制器(ESDC)的电力系统的饱和相关稳定性,从而减小储能阻尼控制器所需的尺寸。ES的容量小于ESDC产生的所需值的现象,使用饱和函数建模为执行器饱和。提出的方法是设计一个抗绕组补偿器(AWC),在饱和情况下,根据ESDC和饱和ES之间的输出差产生信号,然后将信号增强到ESDC,以减轻饱和的不利影响。采用电力系统的降阶模型和线性矩阵不等式来设计AWC。介绍了详细的设计过程。以改进的4机2区电力系统和10机新英格兰电力系统为例,验证了AWC设计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of anti-windup compensation for energy storage based damping controller to enhance power system stability
The application of energy storage (ES) in power system is limited due to the high cost of the ES device, which exponentially increases with its capacity. This paper is to improve the saturation-dependent stability of the power system equipped with the energy storage based damping controller (ESDC), and hence, reduce the required size of the ES. The phenomenon that the capacity of ES is smaller than the required value produced by the ESDC, is modeled as actuator saturation using the saturation function. The proposed method is to design an anti-windup compensator (AWC), which in the event of saturation, produces a signal based on the output difference between the ESDC and saturated ES and then augment the signal to the ESDC to alleviate the adverse effect of saturation. The AWC is designed with the reduced- order model of power system and linear matrix inequality. Detailed design procedure is introduced. Case studies based on a modified 4-machine 2-area power system and 10-machine New England power system are carried out to demonstrate the effectiveness of the AWC design method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information theoretic index for regime shifts in power systems Optimal voltage regulation for unbalanced distribution networks considering distributed energy resources Evaluation of NERC's BRD frequency control standard in hydroelectric generation Distributed multi-agent scheme to improve dynamic voltage stability of distribution networks A multiagent system for residential DC microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1