J. Brankov, G. Khelashvili, D. Chapman, M. Anastasio, Yongyi Yang, Z. Zhong, M. Wernick
{"title":"多像放射照相成像的物理模型","authors":"J. Brankov, G. Khelashvili, D. Chapman, M. Anastasio, Yongyi Yang, Z. Zhong, M. Wernick","doi":"10.1109/NSSMIC.2005.1596798","DOIUrl":null,"url":null,"abstract":"We have recently proposed a new X-ray imaging method, called multiple-image radiography (MIR), which simultaneously produces images of absorption, refraction, and ultra-small-angle scatter, while rejecting higher-angle scatter. This paper presents a theoretical model of the relevant X-ray propagation mechanisms, thereby explaining why MIR works. Specifically, beam propagation is computed through a stratified scattering medium in an ultra-small-angle regime. This analysis demonstrates that the MIR images are linear with object thickness, which is a requirement for computed tomography by standard reconstruction methods.","PeriodicalId":105619,"journal":{"name":"IEEE Nuclear Science Symposium Conference Record, 2005","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical model of image formation in multiple-image radiography\",\"authors\":\"J. Brankov, G. Khelashvili, D. Chapman, M. Anastasio, Yongyi Yang, Z. Zhong, M. Wernick\",\"doi\":\"10.1109/NSSMIC.2005.1596798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have recently proposed a new X-ray imaging method, called multiple-image radiography (MIR), which simultaneously produces images of absorption, refraction, and ultra-small-angle scatter, while rejecting higher-angle scatter. This paper presents a theoretical model of the relevant X-ray propagation mechanisms, thereby explaining why MIR works. Specifically, beam propagation is computed through a stratified scattering medium in an ultra-small-angle regime. This analysis demonstrates that the MIR images are linear with object thickness, which is a requirement for computed tomography by standard reconstruction methods.\",\"PeriodicalId\":105619,\"journal\":{\"name\":\"IEEE Nuclear Science Symposium Conference Record, 2005\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nuclear Science Symposium Conference Record, 2005\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2005.1596798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium Conference Record, 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2005.1596798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physical model of image formation in multiple-image radiography
We have recently proposed a new X-ray imaging method, called multiple-image radiography (MIR), which simultaneously produces images of absorption, refraction, and ultra-small-angle scatter, while rejecting higher-angle scatter. This paper presents a theoretical model of the relevant X-ray propagation mechanisms, thereby explaining why MIR works. Specifically, beam propagation is computed through a stratified scattering medium in an ultra-small-angle regime. This analysis demonstrates that the MIR images are linear with object thickness, which is a requirement for computed tomography by standard reconstruction methods.