CagA序列标记物在幽门螺杆菌致胃癌危险因素评估中的检测及应用

Chao Zhang, Shunfu Xu, Dong Xu
{"title":"CagA序列标记物在幽门螺杆菌致胃癌危险因素评估中的检测及应用","authors":"Chao Zhang, Shunfu Xu, Dong Xu","doi":"10.1109/BIBM.2010.5706614","DOIUrl":null,"url":null,"abstract":"As a marker of Helicobacter pylori, Cytotoxin-associated gene A (CagA) has been revealed to be the major virulence factor to cause gastroduodenal diseases. However, the molecular mechanisms that underlie the development of different gastroduodenal diseases caused by cagA-positive H. pylori infection remain unknown. Current studies are mainly limited to the relationship between EPIYA motifs in the CagA strain and diseases, but such a relationship is insufficient to explain the diversity of diseases. We propose a new and systematic method to analyze the relationship between the whole CagA sequence patterns and diseases. For this purpose, we introduced entropy calculation to detect key residues of CagA as the gastric cancer biomarkers, and then employed a supervised learning procedure to classify the cancer and non-cancer related CagA strains by using the key residues. We achieved 76% and 71% classification accuracy for Western and East Asian subtypes, respectively. Our study may help establish H. pylori biomarkers for predicting gastroduodenal disease outcome.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection and application of CagA sequence markers for assessing risk factor of gastric cancer caused by Helicobacter pylori\",\"authors\":\"Chao Zhang, Shunfu Xu, Dong Xu\",\"doi\":\"10.1109/BIBM.2010.5706614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a marker of Helicobacter pylori, Cytotoxin-associated gene A (CagA) has been revealed to be the major virulence factor to cause gastroduodenal diseases. However, the molecular mechanisms that underlie the development of different gastroduodenal diseases caused by cagA-positive H. pylori infection remain unknown. Current studies are mainly limited to the relationship between EPIYA motifs in the CagA strain and diseases, but such a relationship is insufficient to explain the diversity of diseases. We propose a new and systematic method to analyze the relationship between the whole CagA sequence patterns and diseases. For this purpose, we introduced entropy calculation to detect key residues of CagA as the gastric cancer biomarkers, and then employed a supervised learning procedure to classify the cancer and non-cancer related CagA strains by using the key residues. We achieved 76% and 71% classification accuracy for Western and East Asian subtypes, respectively. Our study may help establish H. pylori biomarkers for predicting gastroduodenal disease outcome.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

细胞毒素相关基因a (Cytotoxin-associated gene a, CagA)作为幽门螺杆菌的标志物,是引起胃十二指肠疾病的主要毒力因子。然而,由caga阳性幽门螺杆菌感染引起的不同胃十二指肠疾病发展的分子机制尚不清楚。目前的研究主要局限于CagA菌株中EPIYA基序与疾病的关系,但这种关系不足以解释疾病的多样性。我们提出了一种新的系统的方法来分析整个CagA序列模式与疾病之间的关系。为此,我们引入熵计算来检测CagA关键残基作为胃癌生物标志物,然后利用关键残基采用监督学习方法对胃癌和非癌症相关的CagA菌株进行分类。我们对西亚和东亚亚型的分类准确率分别达到76%和71%。我们的研究可能有助于建立预测胃十二指肠疾病预后的幽门螺杆菌生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection and application of CagA sequence markers for assessing risk factor of gastric cancer caused by Helicobacter pylori
As a marker of Helicobacter pylori, Cytotoxin-associated gene A (CagA) has been revealed to be the major virulence factor to cause gastroduodenal diseases. However, the molecular mechanisms that underlie the development of different gastroduodenal diseases caused by cagA-positive H. pylori infection remain unknown. Current studies are mainly limited to the relationship between EPIYA motifs in the CagA strain and diseases, but such a relationship is insufficient to explain the diversity of diseases. We propose a new and systematic method to analyze the relationship between the whole CagA sequence patterns and diseases. For this purpose, we introduced entropy calculation to detect key residues of CagA as the gastric cancer biomarkers, and then employed a supervised learning procedure to classify the cancer and non-cancer related CagA strains by using the key residues. We achieved 76% and 71% classification accuracy for Western and East Asian subtypes, respectively. Our study may help establish H. pylori biomarkers for predicting gastroduodenal disease outcome.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1