基于动态分布式粒子群优化算法的多机器人系统无碰撞最优路径

Asma Ayari, Sadok Bouamama
{"title":"基于动态分布式粒子群优化算法的多机器人系统无碰撞最优路径","authors":"Asma Ayari, Sadok Bouamama","doi":"10.1109/ICAR.2017.8023655","DOIUrl":null,"url":null,"abstract":"One of the main areas of artificial intelligence is the field of robotics, where Multiple Robot Systems (MRS) are one of the most advanced artificial intelligence resolutions to the problems faced by humans. However, the control of the MRS becomes unreliable and even infeasible if the number of robots augments. This paper tries to find a solution for the problem of multi robots path planning considering the collision risks. A new Dynamic Distributed Particle Swarm Optimization (D2PSO) algorithm is proposed. It consists in calculating two Local Optima Detectors. We apply a restriction rule for particles that are not contributing in optimization process and so causing a stagnation issue. Experiments of the strategy on the motion and evaluation of the results will be presented to prove the efficacy of such approach.","PeriodicalId":198633,"journal":{"name":"2017 18th International Conference on Advanced Robotics (ICAR)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Collision-free optimal paths for multiple robot systems using a new dynamic distributed particle swarm optimization algorithm\",\"authors\":\"Asma Ayari, Sadok Bouamama\",\"doi\":\"10.1109/ICAR.2017.8023655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main areas of artificial intelligence is the field of robotics, where Multiple Robot Systems (MRS) are one of the most advanced artificial intelligence resolutions to the problems faced by humans. However, the control of the MRS becomes unreliable and even infeasible if the number of robots augments. This paper tries to find a solution for the problem of multi robots path planning considering the collision risks. A new Dynamic Distributed Particle Swarm Optimization (D2PSO) algorithm is proposed. It consists in calculating two Local Optima Detectors. We apply a restriction rule for particles that are not contributing in optimization process and so causing a stagnation issue. Experiments of the strategy on the motion and evaluation of the results will be presented to prove the efficacy of such approach.\",\"PeriodicalId\":198633,\"journal\":{\"name\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2017.8023655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2017.8023655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

人工智能的主要领域之一是机器人领域,其中多机器人系统(MRS)是解决人类面临的问题的最先进的人工智能解决方案之一。然而,随着机器人数量的增加,MRS的控制变得不可靠,甚至不可行。本文试图寻找一个考虑碰撞风险的多机器人路径规划问题的解决方案。提出了一种新的动态分布式粒子群优化算法(D2PSO)。它包括计算两个局部最优检测器。我们对那些在优化过程中没有贡献从而导致停滞问题的粒子应用了一个限制规则。本文将对该策略进行运动实验和结果评价,以证明该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collision-free optimal paths for multiple robot systems using a new dynamic distributed particle swarm optimization algorithm
One of the main areas of artificial intelligence is the field of robotics, where Multiple Robot Systems (MRS) are one of the most advanced artificial intelligence resolutions to the problems faced by humans. However, the control of the MRS becomes unreliable and even infeasible if the number of robots augments. This paper tries to find a solution for the problem of multi robots path planning considering the collision risks. A new Dynamic Distributed Particle Swarm Optimization (D2PSO) algorithm is proposed. It consists in calculating two Local Optima Detectors. We apply a restriction rule for particles that are not contributing in optimization process and so causing a stagnation issue. Experiments of the strategy on the motion and evaluation of the results will be presented to prove the efficacy of such approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Questionnaire experiment using networked service robots Model selection for incremental learning of generalizable movement primitives Safety evaluation method of robot arm considering energy of contact Robotman: A security robot for human-robot interaction Physical edge detection in clothing items for robotic manipulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1