流数据可视化的焦点+上下文与聚合技术实证研究

E. Ragan, Andrew S. Stamps, J. Goodall
{"title":"流数据可视化的焦点+上下文与聚合技术实证研究","authors":"E. Ragan, Andrew S. Stamps, J. Goodall","doi":"10.1145/3399715.3399837","DOIUrl":null,"url":null,"abstract":"Analysis of streaming data often involves both real-time monitoring of incoming data as well as contextual awareness of data history. A focus-plus-context approach can support both goals, with variable levels of visual aggregation making it possible to provide a high level of detail for incoming and recent data while providing contextual information about recent history. Visual aggregation reduces data resolution in order to show the context of data over large periods of time within a limited display space. With a controlled experiment, we evaluated the effectiveness of different types of aggregation for four types of stream-analysis tasks. Overall, the results show that a focus-plus-context design has little negative impact on the ability to successfully monitor and analyze streaming data, making it possible to show longer periods of time than other approaches. However, visual aggregation can be problematic for trend recognition tasks. This research demonstrates how the effectiveness of the visualization depends on the specifics of the analysis task.","PeriodicalId":149902,"journal":{"name":"Proceedings of the International Conference on Advanced Visual Interfaces","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Empirical Study of Focus-Plus-Context and Aggregation Techniques for the Visualization of Streaming Data\",\"authors\":\"E. Ragan, Andrew S. Stamps, J. Goodall\",\"doi\":\"10.1145/3399715.3399837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of streaming data often involves both real-time monitoring of incoming data as well as contextual awareness of data history. A focus-plus-context approach can support both goals, with variable levels of visual aggregation making it possible to provide a high level of detail for incoming and recent data while providing contextual information about recent history. Visual aggregation reduces data resolution in order to show the context of data over large periods of time within a limited display space. With a controlled experiment, we evaluated the effectiveness of different types of aggregation for four types of stream-analysis tasks. Overall, the results show that a focus-plus-context design has little negative impact on the ability to successfully monitor and analyze streaming data, making it possible to show longer periods of time than other approaches. However, visual aggregation can be problematic for trend recognition tasks. This research demonstrates how the effectiveness of the visualization depends on the specifics of the analysis task.\",\"PeriodicalId\":149902,\"journal\":{\"name\":\"Proceedings of the International Conference on Advanced Visual Interfaces\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Advanced Visual Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3399715.3399837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Advanced Visual Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3399715.3399837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

流数据的分析通常既包括对传入数据的实时监控,也包括对数据历史的上下文感知。焦点加上下文的方法可以支持这两个目标,通过不同级别的视觉聚合,可以为传入的和最近的数据提供高级别的详细信息,同时提供有关最近历史的上下文信息。可视聚合降低了数据分辨率,以便在有限的显示空间内显示大时间段内的数据上下文。通过对照实验,我们评估了四种类型流分析任务中不同类型聚合的有效性。总体而言,结果表明,焦点加上下文的设计对成功监控和分析流数据的能力几乎没有负面影响,使其能够显示比其他方法更长的时间。然而,视觉聚合在趋势识别任务中可能存在问题。这项研究证明了可视化的有效性如何取决于分析任务的具体情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Empirical Study of Focus-Plus-Context and Aggregation Techniques for the Visualization of Streaming Data
Analysis of streaming data often involves both real-time monitoring of incoming data as well as contextual awareness of data history. A focus-plus-context approach can support both goals, with variable levels of visual aggregation making it possible to provide a high level of detail for incoming and recent data while providing contextual information about recent history. Visual aggregation reduces data resolution in order to show the context of data over large periods of time within a limited display space. With a controlled experiment, we evaluated the effectiveness of different types of aggregation for four types of stream-analysis tasks. Overall, the results show that a focus-plus-context design has little negative impact on the ability to successfully monitor and analyze streaming data, making it possible to show longer periods of time than other approaches. However, visual aggregation can be problematic for trend recognition tasks. This research demonstrates how the effectiveness of the visualization depends on the specifics of the analysis task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HeyTAP Comparing and Exploring High-Dimensional Data with Dimensionality Reduction Algorithms and Matrix Visualizations VITRuM Evaluating User Preferences for Augmented Reality Interactions with the Internet of Things TieLent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1