Jun En Low, D. S. B. Shaiful, Luke Thura Soe Win, G. Soh, S. Foong
{"title":"具有多模态结构效率和优化半空过渡的混合航空机器人设计","authors":"Jun En Low, D. S. B. Shaiful, Luke Thura Soe Win, G. Soh, S. Foong","doi":"10.1142/S2301385019500067","DOIUrl":null,"url":null,"abstract":"In this paper, we explore a novel multi-mode hybrid Unmanned Aerial Vehicle (UAV). We combine a tailless fixed-wing with a dual-wing monocopter such that the craft’s propulsion systems and aerodynamic surfaces are fully utilized in both a horizontal cruising mode and a vertical hovering mode. This maximizes the structural efficiency across the flight envelope, thereby reducing drag and unused mass while airborne in either flight mode. This UAV is also designed such that the transition between the two flight modes can be executed in mid-air, using only its existing flight actuators and sensors — there are no transition specific actuators. Using two prototypes, the foundational design and control of the system is established; the first explores the hovering mode characteristics of the unique dual-wing monocopter configuration, while the second explores the full multi-mode capabilities of the combined platform. In addition to analytical simulations, the prototypes are experimentally evaluated and assessed to demonstrate the feasibility, viability and potential of this multi-mode aerial robot design.","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Design of a Hybrid Aerial Robot with Multi-Mode Structural Efficiency and Optimized Mid-Air Transition\",\"authors\":\"Jun En Low, D. S. B. Shaiful, Luke Thura Soe Win, G. Soh, S. Foong\",\"doi\":\"10.1142/S2301385019500067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore a novel multi-mode hybrid Unmanned Aerial Vehicle (UAV). We combine a tailless fixed-wing with a dual-wing monocopter such that the craft’s propulsion systems and aerodynamic surfaces are fully utilized in both a horizontal cruising mode and a vertical hovering mode. This maximizes the structural efficiency across the flight envelope, thereby reducing drag and unused mass while airborne in either flight mode. This UAV is also designed such that the transition between the two flight modes can be executed in mid-air, using only its existing flight actuators and sensors — there are no transition specific actuators. Using two prototypes, the foundational design and control of the system is established; the first explores the hovering mode characteristics of the unique dual-wing monocopter configuration, while the second explores the full multi-mode capabilities of the combined platform. In addition to analytical simulations, the prototypes are experimentally evaluated and assessed to demonstrate the feasibility, viability and potential of this multi-mode aerial robot design.\",\"PeriodicalId\":164619,\"journal\":{\"name\":\"Unmanned Syst.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unmanned Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2301385019500067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unmanned Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2301385019500067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a Hybrid Aerial Robot with Multi-Mode Structural Efficiency and Optimized Mid-Air Transition
In this paper, we explore a novel multi-mode hybrid Unmanned Aerial Vehicle (UAV). We combine a tailless fixed-wing with a dual-wing monocopter such that the craft’s propulsion systems and aerodynamic surfaces are fully utilized in both a horizontal cruising mode and a vertical hovering mode. This maximizes the structural efficiency across the flight envelope, thereby reducing drag and unused mass while airborne in either flight mode. This UAV is also designed such that the transition between the two flight modes can be executed in mid-air, using only its existing flight actuators and sensors — there are no transition specific actuators. Using two prototypes, the foundational design and control of the system is established; the first explores the hovering mode characteristics of the unique dual-wing monocopter configuration, while the second explores the full multi-mode capabilities of the combined platform. In addition to analytical simulations, the prototypes are experimentally evaluated and assessed to demonstrate the feasibility, viability and potential of this multi-mode aerial robot design.