基于K-NN和线性支持向量机的计算机断层图像中原发性脑肿瘤的鲁棒分类

G. Sundararaj, V. Balamurugan
{"title":"基于K-NN和线性支持向量机的计算机断层图像中原发性脑肿瘤的鲁棒分类","authors":"G. Sundararaj, V. Balamurugan","doi":"10.1109/IC3I.2014.7019693","DOIUrl":null,"url":null,"abstract":"Computer Tomography (CT) Images are widely used in the intracranical hematoma and hemorrhage. In this paper we have developed a new approach for automatic classification of brain tumor in CT images. The proposed method consists of four stages namely preprocessing, feature extraction, feature reduction and classification. In the first stage Gaussian filter is applied for noise reduction and to make the image suitable for extracting the features. In the second stage, various texture and intensity based features are extracted for classification. In the next stage principal component analysis (PCA) is used to reduce the dimensionality of the feature space which results in a more efficient and accurate classification. In the classification stage, two classifiers are used for classify the experimental images into normal and abnormal. The first classifier is based on k-nearest neighbour and second is Linear SVM. The obtained experimental are evaluated using the metric similarity index (SI), overlap fraction (OF), and extra fraction (EF). For comparison, the performance of the proposed technique has significantly improved the tumor detection accuracy with other neural network based classifier.","PeriodicalId":430848,"journal":{"name":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Robust classification of primary brain tumor in Computer Tomography images using K-NN and linear SVM\",\"authors\":\"G. Sundararaj, V. Balamurugan\",\"doi\":\"10.1109/IC3I.2014.7019693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer Tomography (CT) Images are widely used in the intracranical hematoma and hemorrhage. In this paper we have developed a new approach for automatic classification of brain tumor in CT images. The proposed method consists of four stages namely preprocessing, feature extraction, feature reduction and classification. In the first stage Gaussian filter is applied for noise reduction and to make the image suitable for extracting the features. In the second stage, various texture and intensity based features are extracted for classification. In the next stage principal component analysis (PCA) is used to reduce the dimensionality of the feature space which results in a more efficient and accurate classification. In the classification stage, two classifiers are used for classify the experimental images into normal and abnormal. The first classifier is based on k-nearest neighbour and second is Linear SVM. The obtained experimental are evaluated using the metric similarity index (SI), overlap fraction (OF), and extra fraction (EF). For comparison, the performance of the proposed technique has significantly improved the tumor detection accuracy with other neural network based classifier.\",\"PeriodicalId\":430848,\"journal\":{\"name\":\"2014 International Conference on Contemporary Computing and Informatics (IC3I)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Contemporary Computing and Informatics (IC3I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3I.2014.7019693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2014.7019693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

计算机断层扫描(CT)在颅内血肿和出血的诊断中有着广泛的应用。本文提出了一种新的脑肿瘤CT图像自动分类方法。该方法包括预处理、特征提取、特征约简和分类四个阶段。第一阶段采用高斯滤波进行降噪,使图像适合提取特征。在第二阶段,提取各种基于纹理和强度的特征进行分类。在第二阶段,使用主成分分析(PCA)来降低特征空间的维数,从而提高分类的效率和准确性。在分类阶段,使用两个分类器将实验图像分为正常和异常。第一个分类器是基于k近邻的,第二个分类器是线性支持向量机。利用度量相似指数(SI)、重叠分数(OF)和额外分数(EF)对得到的实验结果进行评价。与其他基于神经网络的分类器相比,该技术的性能显著提高了肿瘤检测的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust classification of primary brain tumor in Computer Tomography images using K-NN and linear SVM
Computer Tomography (CT) Images are widely used in the intracranical hematoma and hemorrhage. In this paper we have developed a new approach for automatic classification of brain tumor in CT images. The proposed method consists of four stages namely preprocessing, feature extraction, feature reduction and classification. In the first stage Gaussian filter is applied for noise reduction and to make the image suitable for extracting the features. In the second stage, various texture and intensity based features are extracted for classification. In the next stage principal component analysis (PCA) is used to reduce the dimensionality of the feature space which results in a more efficient and accurate classification. In the classification stage, two classifiers are used for classify the experimental images into normal and abnormal. The first classifier is based on k-nearest neighbour and second is Linear SVM. The obtained experimental are evaluated using the metric similarity index (SI), overlap fraction (OF), and extra fraction (EF). For comparison, the performance of the proposed technique has significantly improved the tumor detection accuracy with other neural network based classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart home and smart city solutions enabled by 5G, IoT, AAI and CoT services Video retrieval: An accurate approach based on Kirsch descriptor Microarray data classification using Fuzzy K-Nearest Neighbor Assessment of data quality in Web sites: towards a model A novel cross layer wireless mesh network protocol for distributed generation in electrical networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1