用于医学图像分类的空间不确定性非平稳映射

T. Pham
{"title":"用于医学图像分类的空间不确定性非平稳映射","authors":"T. Pham","doi":"10.1109/ICMB.2014.46","DOIUrl":null,"url":null,"abstract":"Automated classification of medical images is very useful for physicians and surgeons in the diagnoses of complex diseases. Computerized medical pattern recognition tools can capture subtle image properties of various pathological patterns and therefore narrow down the gap of reproducible results for reliable decision making under uncertainty. In this paper, a nonstationary mapping of spatial uncertainty in medical images is introduced for feature extraction, which can be effectively applied for diagnostic pattern classification. Experimental results obtained from using abdominal computed tomography imaging and comparisons with other feature extraction methods demonstrate the usefulness of the proposed mapping model.","PeriodicalId":273636,"journal":{"name":"2014 International Conference on Medical Biometrics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Nonstationary Mapping of Spatial Uncertainty for Medical Image Classification\",\"authors\":\"T. Pham\",\"doi\":\"10.1109/ICMB.2014.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated classification of medical images is very useful for physicians and surgeons in the diagnoses of complex diseases. Computerized medical pattern recognition tools can capture subtle image properties of various pathological patterns and therefore narrow down the gap of reproducible results for reliable decision making under uncertainty. In this paper, a nonstationary mapping of spatial uncertainty in medical images is introduced for feature extraction, which can be effectively applied for diagnostic pattern classification. Experimental results obtained from using abdominal computed tomography imaging and comparisons with other feature extraction methods demonstrate the usefulness of the proposed mapping model.\",\"PeriodicalId\":273636,\"journal\":{\"name\":\"2014 International Conference on Medical Biometrics\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Medical Biometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMB.2014.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Medical Biometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMB.2014.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

医学图像的自动分类对于内科医生和外科医生诊断复杂疾病非常有用。计算机医学模式识别工具可以捕捉各种病理模式的细微图像特性,从而缩小可重复性结果的差距,从而在不确定的情况下做出可靠的决策。本文引入医学图像空间不确定性的非平稳映射进行特征提取,可有效地应用于诊断模式分类。通过腹部计算机断层成像和与其他特征提取方法的比较得到的实验结果证明了所提出的映射模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonstationary Mapping of Spatial Uncertainty for Medical Image Classification
Automated classification of medical images is very useful for physicians and surgeons in the diagnoses of complex diseases. Computerized medical pattern recognition tools can capture subtle image properties of various pathological patterns and therefore narrow down the gap of reproducible results for reliable decision making under uncertainty. In this paper, a nonstationary mapping of spatial uncertainty in medical images is introduced for feature extraction, which can be effectively applied for diagnostic pattern classification. Experimental results obtained from using abdominal computed tomography imaging and comparisons with other feature extraction methods demonstrate the usefulness of the proposed mapping model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Tongue Body Segmentation A CGA-MRF Hybrid Method for Iris Texture Analysis and Modeling Smartphone Based Body Area Network System Real-Time Wireless ECG Biometrics with Mobile Devices The Objectifying System Using for Color Inspection of Traditional Chinese Medicine Based on the Digital Image Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1