{"title":"通过强化学习在多个资源上进行成本高效的协商","authors":"Yu Xu, Jianguo Yao, H. Jacobsen, Haibing Guan","doi":"10.1109/IWQoS.2017.7969160","DOIUrl":null,"url":null,"abstract":"Cloud applications can achieve similar performance with diverse multi-resource configurations, allowing cloud service providers to benefit from optimal resource allocation for reducing their operation cost. This paper aims to solve the problem of multi-resource negotiation with considerations of both the service-level agreement (SLA) and the cost efficiency. The performance and resource demand are usually application-dependent, making the optimization problem complicated, especially when the dimension of multi-resource configuration is large. To this end, we use reinforcement learning to solve the optimization problem of multi-resource configuration with simultaneous optimization of the learning efficiency and performance guarantee. The developed prototype named SmartYARN is extended Apache YARN equipped with our learning algorithm which can enable cloud applications to negotiate multiple resources cost-effectively. The extensive evaluations show that SmartYARN performs well in reducing the cost of resource usage while maintaining compliance with the SLA constraints of cloud service simultaneously.","PeriodicalId":422861,"journal":{"name":"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Cost-efficient negotiation over multiple resources with reinforcement learning\",\"authors\":\"Yu Xu, Jianguo Yao, H. Jacobsen, Haibing Guan\",\"doi\":\"10.1109/IWQoS.2017.7969160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud applications can achieve similar performance with diverse multi-resource configurations, allowing cloud service providers to benefit from optimal resource allocation for reducing their operation cost. This paper aims to solve the problem of multi-resource negotiation with considerations of both the service-level agreement (SLA) and the cost efficiency. The performance and resource demand are usually application-dependent, making the optimization problem complicated, especially when the dimension of multi-resource configuration is large. To this end, we use reinforcement learning to solve the optimization problem of multi-resource configuration with simultaneous optimization of the learning efficiency and performance guarantee. The developed prototype named SmartYARN is extended Apache YARN equipped with our learning algorithm which can enable cloud applications to negotiate multiple resources cost-effectively. The extensive evaluations show that SmartYARN performs well in reducing the cost of resource usage while maintaining compliance with the SLA constraints of cloud service simultaneously.\",\"PeriodicalId\":422861,\"journal\":{\"name\":\"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWQoS.2017.7969160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2017.7969160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cost-efficient negotiation over multiple resources with reinforcement learning
Cloud applications can achieve similar performance with diverse multi-resource configurations, allowing cloud service providers to benefit from optimal resource allocation for reducing their operation cost. This paper aims to solve the problem of multi-resource negotiation with considerations of both the service-level agreement (SLA) and the cost efficiency. The performance and resource demand are usually application-dependent, making the optimization problem complicated, especially when the dimension of multi-resource configuration is large. To this end, we use reinforcement learning to solve the optimization problem of multi-resource configuration with simultaneous optimization of the learning efficiency and performance guarantee. The developed prototype named SmartYARN is extended Apache YARN equipped with our learning algorithm which can enable cloud applications to negotiate multiple resources cost-effectively. The extensive evaluations show that SmartYARN performs well in reducing the cost of resource usage while maintaining compliance with the SLA constraints of cloud service simultaneously.