锂离子电池充电状态的数字双驱动估计

Kai Zhao, Y. Liu, Wenlong Ming, Yue Zhou, Jianzhong Wu
{"title":"锂离子电池充电状态的数字双驱动估计","authors":"Kai Zhao, Y. Liu, Wenlong Ming, Yue Zhou, Jianzhong Wu","doi":"10.1109/energycon53164.2022.9830324","DOIUrl":null,"url":null,"abstract":"Under the net-zero carbon transition, lithium-ion batteries (LIB) plays a critical role in supporting the connection of more renewable power generation, increasing grid resiliency and creating more flexible energy systems. However, poor useful life and relatively high cost of batteries result in barriers that hinder the wider adoption of battery technologies e.g., renewable resources storage. Furthermore, the useful life of a battery is significantly affected by the materials composition, system design and operating conditions, hence, made the control and management of battery systems more challenging. Digitalisation and artificial intelligence (AI) offer an opportunity to establish a battery digital twin that has great potentials to improve the situational awareness of battery management systems and enable the optimal operation of battery storage units. An accurate estimation of the state of charge (SOC) can indicate the battery's status, provide valuable information for maintenance and maximise its useful life. In this paper, a digital twin-driven framework based on a hybrid model that connects LSTM (long short-term memory) and EKF (extended Kalman filter) has been proposed to estimate the SOC of a li-ion battery. LSTM provides more accurate initial SOC estimations and impedance model data to EKF. According to experimental results, the developed battery digital twin is considered less dependent on the initial SOC conditions and is deemed more robust compared to traditional means with a lower RMSE (root mean squared error).","PeriodicalId":106388,"journal":{"name":"2022 IEEE 7th International Energy Conference (ENERGYCON)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Digital Twin-Driven Estimation of State of Charge for Li-ion Battery\",\"authors\":\"Kai Zhao, Y. Liu, Wenlong Ming, Yue Zhou, Jianzhong Wu\",\"doi\":\"10.1109/energycon53164.2022.9830324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under the net-zero carbon transition, lithium-ion batteries (LIB) plays a critical role in supporting the connection of more renewable power generation, increasing grid resiliency and creating more flexible energy systems. However, poor useful life and relatively high cost of batteries result in barriers that hinder the wider adoption of battery technologies e.g., renewable resources storage. Furthermore, the useful life of a battery is significantly affected by the materials composition, system design and operating conditions, hence, made the control and management of battery systems more challenging. Digitalisation and artificial intelligence (AI) offer an opportunity to establish a battery digital twin that has great potentials to improve the situational awareness of battery management systems and enable the optimal operation of battery storage units. An accurate estimation of the state of charge (SOC) can indicate the battery's status, provide valuable information for maintenance and maximise its useful life. In this paper, a digital twin-driven framework based on a hybrid model that connects LSTM (long short-term memory) and EKF (extended Kalman filter) has been proposed to estimate the SOC of a li-ion battery. LSTM provides more accurate initial SOC estimations and impedance model data to EKF. According to experimental results, the developed battery digital twin is considered less dependent on the initial SOC conditions and is deemed more robust compared to traditional means with a lower RMSE (root mean squared error).\",\"PeriodicalId\":106388,\"journal\":{\"name\":\"2022 IEEE 7th International Energy Conference (ENERGYCON)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 7th International Energy Conference (ENERGYCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/energycon53164.2022.9830324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 7th International Energy Conference (ENERGYCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/energycon53164.2022.9830324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在净零碳转型下,锂离子电池(LIB)在支持连接更多可再生能源发电、提高电网弹性和创建更灵活的能源系统方面发挥着关键作用。然而,电池较短的使用寿命和相对较高的成本阻碍了电池技术的广泛采用,例如可再生资源存储。此外,电池的使用寿命受材料组成、系统设计和操作条件的影响很大,因此对电池系统的控制和管理更具挑战性。数字化和人工智能(AI)为建立电池数字孪生体提供了机会,该孪生体在提高电池管理系统的态势感知能力和实现电池存储单元的最佳运行方面具有巨大潜力。准确估计充电状态(SOC)可以指示电池的状态,为维护提供有价值的信息,并最大限度地延长其使用寿命。本文提出了一种基于LSTM(长短期记忆)和EKF(扩展卡尔曼滤波)相结合的混合模型的数字双驱动框架来估计锂离子电池的SOC。LSTM为EKF提供了更准确的初始SOC估计和阻抗模型数据。实验结果表明,与传统方法相比,所开发的电池数字孪生模型对初始SOC条件的依赖较小,并且具有更低的RMSE(均方根误差),具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital Twin-Driven Estimation of State of Charge for Li-ion Battery
Under the net-zero carbon transition, lithium-ion batteries (LIB) plays a critical role in supporting the connection of more renewable power generation, increasing grid resiliency and creating more flexible energy systems. However, poor useful life and relatively high cost of batteries result in barriers that hinder the wider adoption of battery technologies e.g., renewable resources storage. Furthermore, the useful life of a battery is significantly affected by the materials composition, system design and operating conditions, hence, made the control and management of battery systems more challenging. Digitalisation and artificial intelligence (AI) offer an opportunity to establish a battery digital twin that has great potentials to improve the situational awareness of battery management systems and enable the optimal operation of battery storage units. An accurate estimation of the state of charge (SOC) can indicate the battery's status, provide valuable information for maintenance and maximise its useful life. In this paper, a digital twin-driven framework based on a hybrid model that connects LSTM (long short-term memory) and EKF (extended Kalman filter) has been proposed to estimate the SOC of a li-ion battery. LSTM provides more accurate initial SOC estimations and impedance model data to EKF. According to experimental results, the developed battery digital twin is considered less dependent on the initial SOC conditions and is deemed more robust compared to traditional means with a lower RMSE (root mean squared error).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Monitoring System for PV plants using Open Technologies Fast charging for electric vehicles station integration with renewable energy sources Multi-objective Combined Heuristic-SPSO for Power Loss and Congestion Mitigation in Distribution Networks Long-term Energy and Fuel Consumption Forecast in Private and Commercial Transport using Artificial Life Approach Enhanced Control of the Interchange Power Flows in the Interconnected Energy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1