使用Hybrid-GA的两段式空间层的最佳设计

今村 俊介, 小島 広久, 土屋 武司, 弘敏 久保田
{"title":"使用Hybrid-GA的两段式空间层的最佳设计","authors":"今村 俊介, 小島 広久, 土屋 武司, 弘敏 久保田","doi":"10.2322/JJSASS.54.279","DOIUrl":null,"url":null,"abstract":"This paper proposes a Hybrid Genetic Algorithm (Hybrid-GA) which is suitable for a large scale multidisciplinary optimization problem such as Two-Stage-To-Orbit (TSTO) spaceplane optimal design problem. The Hybrid-GA is implemented by combining Sequential Quadratic Programming (SQP) method with GA. When constructing the Hybrid-GA, there are three problems that should be solved; 1) decision of optimized variables and discrete method, 2) how to use results of local search, and 3) selection for survival method. These problems are discussed and solved in order to effectively combine SQP method with GA. In order to demonstrate the effectiveness of the proposed Hybrid-GA, the TSTO spaceplane optimal design problem, which consists of weight, aerodynamics, propulsion, and flight trajectory analyses, is investigated using the proposed Hybrid-GA, and the optimal results of Hybrid-GA are compared with that of Simple-GA, and SQP methods. Finally, strategy to achieve the TSTO spaceplane is proposed by comparing the optimal results of changing payload weight and maximum wing load factor of booster.","PeriodicalId":144591,"journal":{"name":"Journal of The Japan Society for Aeronautical and Space Sciences","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid-GA を用いた二段式スペースプレーンの最適設計\",\"authors\":\"今村 俊介, 小島 広久, 土屋 武司, 弘敏 久保田\",\"doi\":\"10.2322/JJSASS.54.279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a Hybrid Genetic Algorithm (Hybrid-GA) which is suitable for a large scale multidisciplinary optimization problem such as Two-Stage-To-Orbit (TSTO) spaceplane optimal design problem. The Hybrid-GA is implemented by combining Sequential Quadratic Programming (SQP) method with GA. When constructing the Hybrid-GA, there are three problems that should be solved; 1) decision of optimized variables and discrete method, 2) how to use results of local search, and 3) selection for survival method. These problems are discussed and solved in order to effectively combine SQP method with GA. In order to demonstrate the effectiveness of the proposed Hybrid-GA, the TSTO spaceplane optimal design problem, which consists of weight, aerodynamics, propulsion, and flight trajectory analyses, is investigated using the proposed Hybrid-GA, and the optimal results of Hybrid-GA are compared with that of Simple-GA, and SQP methods. Finally, strategy to achieve the TSTO spaceplane is proposed by comparing the optimal results of changing payload weight and maximum wing load factor of booster.\",\"PeriodicalId\":144591,\"journal\":{\"name\":\"Journal of The Japan Society for Aeronautical and Space Sciences\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Japan Society for Aeronautical and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2322/JJSASS.54.279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Japan Society for Aeronautical and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/JJSASS.54.279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种适用于两级到轨道空间飞机优化设计等大规模多学科优化问题的混合遗传算法(Hybrid- ga)。将序列二次规划(SQP)方法与遗传算法相结合,实现了混合遗传算法。在构建混合遗传算法时,需要解决三个问题:1)最优变量和离散方法的选择,2)如何使用局部搜索结果,3)生存方法的选择。对这些问题进行了讨论和解决,以便将SQP方法与遗传算法有效地结合起来。为了验证所提混合遗传算法的有效性,利用所提混合遗传算法研究了包括重量、空气动力学、推进和飞行轨迹分析在内的TSTO航天飞机优化设计问题,并将其优化结果与简单遗传算法和SQP方法进行了比较。最后,通过对载荷重量变化和助推器最大翼载系数优化结果的比较,提出了实现TSTO航天飞机的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid-GA を用いた二段式スペースプレーンの最適設計
This paper proposes a Hybrid Genetic Algorithm (Hybrid-GA) which is suitable for a large scale multidisciplinary optimization problem such as Two-Stage-To-Orbit (TSTO) spaceplane optimal design problem. The Hybrid-GA is implemented by combining Sequential Quadratic Programming (SQP) method with GA. When constructing the Hybrid-GA, there are three problems that should be solved; 1) decision of optimized variables and discrete method, 2) how to use results of local search, and 3) selection for survival method. These problems are discussed and solved in order to effectively combine SQP method with GA. In order to demonstrate the effectiveness of the proposed Hybrid-GA, the TSTO spaceplane optimal design problem, which consists of weight, aerodynamics, propulsion, and flight trajectory analyses, is investigated using the proposed Hybrid-GA, and the optimal results of Hybrid-GA are compared with that of Simple-GA, and SQP methods. Finally, strategy to achieve the TSTO spaceplane is proposed by comparing the optimal results of changing payload weight and maximum wing load factor of booster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
超小型衛星「鳳龍弐号」の熱設計・検証手法と軌道データ解析 D-SEND#2の制御系設計 ϕ3.2mm BKNO3ペレットの低圧下における燃焼速度の取得 直交格子法における埋め込み境界法とCut-Cell法の比較ー壁面近傍での圧力・せん断応力分布の検証ー ボルテックス・ジェネレーターによる翼前縁フラップ ヒンジラインの離制御に関する実験研究
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1