基于粗糙集和软集技术的客户感知医院排名框架

Arati Mohapatro, S. Mahendran, T. K. Das
{"title":"基于粗糙集和软集技术的客户感知医院排名框架","authors":"Arati Mohapatro, S. Mahendran, T. K. Das","doi":"10.4018/ijhisi.2020010103","DOIUrl":null,"url":null,"abstract":"Hospital ranking is a cumbersome task, as it involves dealing with a large volume of underlying data. Rankings are usually accomplished by comparing different dimensions of quality and services. Even the quality care measurement of a hospital is multi-dimensional: It includes the experience of both clinical care and patient care. In this research, however, the authors focus on ratings based only on customer perception. A framework which consists of two stages—Stage I and Stage II—is designed. In the first stage, the model uses a rough set in a fuzzy approximation space (RSFAS) technique to classify the data; whereas in the second stage, a fuzzy soft set (FSS) technique is employed to generate the rating score. The model is employed for comparing USA hospitals by region using annual HCAHPS survey data. This article shows how ranking of the healthcare institutions can be carried out using the RSFAS (rough set in a fuzzy approximation space) and fuzzy soft set techniques.","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Framework for Ranking Hospitals Based on Customer Perception Using Rough Set and Soft Set Techniques\",\"authors\":\"Arati Mohapatro, S. Mahendran, T. K. Das\",\"doi\":\"10.4018/ijhisi.2020010103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hospital ranking is a cumbersome task, as it involves dealing with a large volume of underlying data. Rankings are usually accomplished by comparing different dimensions of quality and services. Even the quality care measurement of a hospital is multi-dimensional: It includes the experience of both clinical care and patient care. In this research, however, the authors focus on ratings based only on customer perception. A framework which consists of two stages—Stage I and Stage II—is designed. In the first stage, the model uses a rough set in a fuzzy approximation space (RSFAS) technique to classify the data; whereas in the second stage, a fuzzy soft set (FSS) technique is employed to generate the rating score. The model is employed for comparing USA hospitals by region using annual HCAHPS survey data. This article shows how ranking of the healthcare institutions can be carried out using the RSFAS (rough set in a fuzzy approximation space) and fuzzy soft set techniques.\",\"PeriodicalId\":101861,\"journal\":{\"name\":\"Int. J. Heal. Inf. Syst. Informatics\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Heal. Inf. Syst. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijhisi.2020010103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijhisi.2020010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

医院排名是一项繁琐的任务,因为它涉及到处理大量的基础数据。排名通常是通过比较不同维度的质量和服务来完成的。甚至医院的质量护理衡量也是多维的:它包括临床护理和患者护理的经验。然而,在这项研究中,作者只关注基于客户感知的评级。设计了一个由第一阶段和第二阶段组成的框架。在第一阶段,该模型使用模糊逼近空间(RSFAS)技术中的粗糙集对数据进行分类;在第二阶段,采用模糊软集(FSS)技术生成评级分数。该模型采用HCAHPS年度调查数据对美国各地区医院进行比较。本文展示了如何使用RSFAS(模糊近似空间中的粗糙集)和模糊软集技术对医疗机构进行排名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Framework for Ranking Hospitals Based on Customer Perception Using Rough Set and Soft Set Techniques
Hospital ranking is a cumbersome task, as it involves dealing with a large volume of underlying data. Rankings are usually accomplished by comparing different dimensions of quality and services. Even the quality care measurement of a hospital is multi-dimensional: It includes the experience of both clinical care and patient care. In this research, however, the authors focus on ratings based only on customer perception. A framework which consists of two stages—Stage I and Stage II—is designed. In the first stage, the model uses a rough set in a fuzzy approximation space (RSFAS) technique to classify the data; whereas in the second stage, a fuzzy soft set (FSS) technique is employed to generate the rating score. The model is employed for comparing USA hospitals by region using annual HCAHPS survey data. This article shows how ranking of the healthcare institutions can be carried out using the RSFAS (rough set in a fuzzy approximation space) and fuzzy soft set techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Management of Electronic Health Records in Virtual Health Environments: The Case of Rocket Health in Uganda Hospital Management Practice of Combined Prediction Method Based on Neural Network Tablet in the Consultation Room and Physician Satisfaction Digital Disparities in Patient Adoption of Telemedicine: A Qualitative Analysis of the Patient Experience A Deep Neural Network for Detecting Coronavirus Disease Using Chest X-Ray Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1