{"title":"二次级联DC/DC升压变换器设计","authors":"Kemal Kaya, Yakup Hameş","doi":"10.36287/SETSCI.4.5.023","DOIUrl":null,"url":null,"abstract":"This study includes the design of quadratic cascade DC/DC boost converter with PI controller. Two or more cascade boost converters have been used to increase system efficiency. Advantages of the proposed converter compared to the conventional boost converter are less current fluctuations and output voltage, the prolongation of system life by dividing the input current, and the less number of semiconductor elements used. What makes this converter more advantageous than others is that it only works with a single controller circuit by adding a diode, capacitor and inductor. The mathematical equations of the system have been obtained by the equivalent circuit analysis and thus the control circuit has been designed. The purpose of the generated control circuit is to keep the output voltage of the system constant due to the power sources that produce different voltages. The controller realizes this by applying to the power switches after generating different pulse widths at variable loads. The proposed quadratic cascade DC/DC boost converter has not caused any change in the output voltage despite the variable load and input voltage values. As a result, the proposed system is longer lasting compared to the conventional boost converters.","PeriodicalId":149297,"journal":{"name":"International Congress on Human-Computer Interaction, Optimization and Robotic Applications Proceedings","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Quadratic Cascade DC/DC Boost Converter Design\",\"authors\":\"Kemal Kaya, Yakup Hameş\",\"doi\":\"10.36287/SETSCI.4.5.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study includes the design of quadratic cascade DC/DC boost converter with PI controller. Two or more cascade boost converters have been used to increase system efficiency. Advantages of the proposed converter compared to the conventional boost converter are less current fluctuations and output voltage, the prolongation of system life by dividing the input current, and the less number of semiconductor elements used. What makes this converter more advantageous than others is that it only works with a single controller circuit by adding a diode, capacitor and inductor. The mathematical equations of the system have been obtained by the equivalent circuit analysis and thus the control circuit has been designed. The purpose of the generated control circuit is to keep the output voltage of the system constant due to the power sources that produce different voltages. The controller realizes this by applying to the power switches after generating different pulse widths at variable loads. The proposed quadratic cascade DC/DC boost converter has not caused any change in the output voltage despite the variable load and input voltage values. As a result, the proposed system is longer lasting compared to the conventional boost converters.\",\"PeriodicalId\":149297,\"journal\":{\"name\":\"International Congress on Human-Computer Interaction, Optimization and Robotic Applications Proceedings\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Congress on Human-Computer Interaction, Optimization and Robotic Applications Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36287/SETSCI.4.5.023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress on Human-Computer Interaction, Optimization and Robotic Applications Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36287/SETSCI.4.5.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This study includes the design of quadratic cascade DC/DC boost converter with PI controller. Two or more cascade boost converters have been used to increase system efficiency. Advantages of the proposed converter compared to the conventional boost converter are less current fluctuations and output voltage, the prolongation of system life by dividing the input current, and the less number of semiconductor elements used. What makes this converter more advantageous than others is that it only works with a single controller circuit by adding a diode, capacitor and inductor. The mathematical equations of the system have been obtained by the equivalent circuit analysis and thus the control circuit has been designed. The purpose of the generated control circuit is to keep the output voltage of the system constant due to the power sources that produce different voltages. The controller realizes this by applying to the power switches after generating different pulse widths at variable loads. The proposed quadratic cascade DC/DC boost converter has not caused any change in the output voltage despite the variable load and input voltage values. As a result, the proposed system is longer lasting compared to the conventional boost converters.