不同大小签名离线识别的特征选择

George D. C. Cavalcanti, Rodrigo C. Doria, E. C. B. C. Filho
{"title":"不同大小签名离线识别的特征选择","authors":"George D. C. Cavalcanti, Rodrigo C. Doria, E. C. B. C. Filho","doi":"10.1109/NNSP.2002.1030047","DOIUrl":null,"url":null,"abstract":"The aim of this work is to select a set of features, which have good performance to solve the problem of signature recognition of different sizes. The signature database was formed for three sizes of signatures per user, small, median and big. This study uses structural features, pseudo-dynamic features and five moment groups. The feature selection method chosen is the one that select the best individual features based on classifiers like Bayes and k-NN.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Feature selection for off-line recognition of different size signatures\",\"authors\":\"George D. C. Cavalcanti, Rodrigo C. Doria, E. C. B. C. Filho\",\"doi\":\"10.1109/NNSP.2002.1030047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to select a set of features, which have good performance to solve the problem of signature recognition of different sizes. The signature database was formed for three sizes of signatures per user, small, median and big. This study uses structural features, pseudo-dynamic features and five moment groups. The feature selection method chosen is the one that select the best individual features based on classifiers like Bayes and k-NN.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本工作的目的是选择一组具有较好性能的特征来解决不同大小的签名识别问题。每个用户签名的大小分为小、中、大三种。本研究采用结构特征、拟动力特征和五个弯矩群。所选择的特征选择方法是基于贝叶斯和k-NN等分类器选择最佳个体特征的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature selection for off-line recognition of different size signatures
The aim of this work is to select a set of features, which have good performance to solve the problem of signature recognition of different sizes. The signature database was formed for three sizes of signatures per user, small, median and big. This study uses structural features, pseudo-dynamic features and five moment groups. The feature selection method chosen is the one that select the best individual features based on classifiers like Bayes and k-NN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of multiple experts in multimodal biometric personal identity verification systems A new SOLPN-based rate control algorithm for MPEG video coding Analog implementation for networks of integrate-and-fire neurons with adaptive local connectivity Removal of residual crosstalk components in blind source separation using LMS filters Functional connectivity modelling in fMRI based on causal networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1