利用地理参考社区提供的图片集进行近似值传感

Daniel Leung, S. Newsam
{"title":"利用地理参考社区提供的图片集进行近似值传感","authors":"Daniel Leung, S. Newsam","doi":"10.1145/1629890.1629903","DOIUrl":null,"url":null,"abstract":"Volunteered geographic information such as that available in blogs, wikis, social networking sites, and community contributed photo collections is enabling new applications. This work investigates the use of georeferenced images from a popular photo sharing site for proximate sensing. In particular, we use computer vision and machine learning techniques to perform land cover classification based on the content of the georeferenced images. We evaluate the results using a ground truth dataset from the National Land Cover Database. We demonstrate that our approach can achieve upwards of 75% classification accuracy in a completely automated fashion.","PeriodicalId":107369,"journal":{"name":"Workshop on Location-based Social Networks","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Proximate sensing using georeferenced community contributed photo collections\",\"authors\":\"Daniel Leung, S. Newsam\",\"doi\":\"10.1145/1629890.1629903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volunteered geographic information such as that available in blogs, wikis, social networking sites, and community contributed photo collections is enabling new applications. This work investigates the use of georeferenced images from a popular photo sharing site for proximate sensing. In particular, we use computer vision and machine learning techniques to perform land cover classification based on the content of the georeferenced images. We evaluate the results using a ground truth dataset from the National Land Cover Database. We demonstrate that our approach can achieve upwards of 75% classification accuracy in a completely automated fashion.\",\"PeriodicalId\":107369,\"journal\":{\"name\":\"Workshop on Location-based Social Networks\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Location-based Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629890.1629903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Location-based Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629890.1629903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

博客、wiki、社会网络站点和社区贡献的图片集中提供的自愿地理信息正在启用新的应用程序。这项工作调查了地理参考图像的使用,这些图像来自一个流行的照片共享网站,用于近似值传感。特别是,我们使用计算机视觉和机器学习技术根据地理参考图像的内容执行土地覆盖分类。我们使用来自国家土地覆盖数据库的地面真实数据集来评估结果。我们证明,我们的方法可以在完全自动化的方式下实现75%以上的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proximate sensing using georeferenced community contributed photo collections
Volunteered geographic information such as that available in blogs, wikis, social networking sites, and community contributed photo collections is enabling new applications. This work investigates the use of georeferenced images from a popular photo sharing site for proximate sensing. In particular, we use computer vision and machine learning techniques to perform land cover classification based on the content of the georeferenced images. We evaluate the results using a ground truth dataset from the National Land Cover Database. We demonstrate that our approach can achieve upwards of 75% classification accuracy in a completely automated fashion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forecasting location-based events with spatio-temporal storytelling VacationFinder: a tool for collecting, analyzing, and visualizing geotagged Twitter data to find top vacation spots Sophy: a morphological framework for structuring geo-referenced social media From where do tweets originate?: a GIS approach for user location inference WeiboStand: capturing Chinese breaking news using Weibo "tweets"
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1