Po-Chen Chen, Yen-Chen Chen, Wei-Hsiang Huang, Chih-Wei Huang, O. Tirkkonen
{"title":"基于ddpg的用户交互移动边缘网络无线电资源管理","authors":"Po-Chen Chen, Yen-Chen Chen, Wei-Hsiang Huang, Chih-Wei Huang, O. Tirkkonen","doi":"10.1109/6GSUMMIT49458.2020.9083926","DOIUrl":null,"url":null,"abstract":"The development of the fifth-generation (5G) system on capability and flexibility enables emerging applications with stringent requirements, such as ultra-high-resolution video streaming and online interactive virtual reality (VR) gaming. Hence, the resource management problem becomes more complicated than in the past, and machine learning can be a powerful tool to provide solutions. In this article, the Deep Deterministic Policy Gradient (DDPG) is used to schedule resources in an edge network environment. We integrate a 3D radio resource structure with componentized Markov decision process (MDP) actions to work on user interactivity-based groups. From the simulation results, we can see that more users are satisfied with DDPG-based radio resource management, especially in bandwidth and latency demanding situations.","PeriodicalId":385212,"journal":{"name":"2020 2nd 6G Wireless Summit (6G SUMMIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"DDPG-Based Radio Resource Management for User Interactive Mobile Edge Networks\",\"authors\":\"Po-Chen Chen, Yen-Chen Chen, Wei-Hsiang Huang, Chih-Wei Huang, O. Tirkkonen\",\"doi\":\"10.1109/6GSUMMIT49458.2020.9083926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of the fifth-generation (5G) system on capability and flexibility enables emerging applications with stringent requirements, such as ultra-high-resolution video streaming and online interactive virtual reality (VR) gaming. Hence, the resource management problem becomes more complicated than in the past, and machine learning can be a powerful tool to provide solutions. In this article, the Deep Deterministic Policy Gradient (DDPG) is used to schedule resources in an edge network environment. We integrate a 3D radio resource structure with componentized Markov decision process (MDP) actions to work on user interactivity-based groups. From the simulation results, we can see that more users are satisfied with DDPG-based radio resource management, especially in bandwidth and latency demanding situations.\",\"PeriodicalId\":385212,\"journal\":{\"name\":\"2020 2nd 6G Wireless Summit (6G SUMMIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd 6G Wireless Summit (6G SUMMIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/6GSUMMIT49458.2020.9083926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd 6G Wireless Summit (6G SUMMIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/6GSUMMIT49458.2020.9083926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DDPG-Based Radio Resource Management for User Interactive Mobile Edge Networks
The development of the fifth-generation (5G) system on capability and flexibility enables emerging applications with stringent requirements, such as ultra-high-resolution video streaming and online interactive virtual reality (VR) gaming. Hence, the resource management problem becomes more complicated than in the past, and machine learning can be a powerful tool to provide solutions. In this article, the Deep Deterministic Policy Gradient (DDPG) is used to schedule resources in an edge network environment. We integrate a 3D radio resource structure with componentized Markov decision process (MDP) actions to work on user interactivity-based groups. From the simulation results, we can see that more users are satisfied with DDPG-based radio resource management, especially in bandwidth and latency demanding situations.