多gpu系统上的可伸缩中间性中心

M. Bernaschi, Giancarlo Carbone, Flavio Vella
{"title":"多gpu系统上的可伸缩中间性中心","authors":"M. Bernaschi, Giancarlo Carbone, Flavio Vella","doi":"10.1145/2903150.2903153","DOIUrl":null,"url":null,"abstract":"Betweenness Centrality (BC) is steadily growing in popularity as a metrics of the influence of a vertex in a graph. The BC score of a vertex is proportional to the number of all-pairs-shortest-paths passing through it. However, complete and exact BC computation for a large-scale graph is an extraordinary challenge that requires high performance computing techniques to provide results in a reasonable amount of time. Our approach combines bi-dimensional (2-D) decomposition of the graph and multi-level parallelism together with a suitable data-thread mapping that overcomes most of the difficulties caused by the irregularity of the computation on GPUs. In order to reduce time and space requirements of BC computation, a heuristics based on 1-degree reduction technique is developed as well. Experimental results on synthetic and real-world graphs show that the proposed techniques are well suited to compute BC scores in graphs which are too large to fit in the memory of a single computational node.","PeriodicalId":226569,"journal":{"name":"Proceedings of the ACM International Conference on Computing Frontiers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Scalable betweenness centrality on multi-GPU systems\",\"authors\":\"M. Bernaschi, Giancarlo Carbone, Flavio Vella\",\"doi\":\"10.1145/2903150.2903153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Betweenness Centrality (BC) is steadily growing in popularity as a metrics of the influence of a vertex in a graph. The BC score of a vertex is proportional to the number of all-pairs-shortest-paths passing through it. However, complete and exact BC computation for a large-scale graph is an extraordinary challenge that requires high performance computing techniques to provide results in a reasonable amount of time. Our approach combines bi-dimensional (2-D) decomposition of the graph and multi-level parallelism together with a suitable data-thread mapping that overcomes most of the difficulties caused by the irregularity of the computation on GPUs. In order to reduce time and space requirements of BC computation, a heuristics based on 1-degree reduction technique is developed as well. Experimental results on synthetic and real-world graphs show that the proposed techniques are well suited to compute BC scores in graphs which are too large to fit in the memory of a single computational node.\",\"PeriodicalId\":226569,\"journal\":{\"name\":\"Proceedings of the ACM International Conference on Computing Frontiers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2903150.2903153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2903150.2903153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

中间中心性(between - Centrality, BC)作为图中顶点影响的度量,正逐渐受到人们的欢迎。顶点的BC分数与经过它的全对最短路径的数量成正比。然而,对大规模图进行完整而精确的BC计算是一项巨大的挑战,需要高性能计算技术在合理的时间内提供结果。我们的方法结合了二维(2-D)图分解和多层次并行性,以及合适的数据线程映射,克服了gpu上计算不规则性造成的大多数困难。为了减少BC计算对时间和空间的要求,提出了一种基于1度约简的启发式算法。在合成图和实际图上的实验结果表明,所提出的技术非常适合于计算大到无法容纳单个计算节点内存的图的BC分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable betweenness centrality on multi-GPU systems
Betweenness Centrality (BC) is steadily growing in popularity as a metrics of the influence of a vertex in a graph. The BC score of a vertex is proportional to the number of all-pairs-shortest-paths passing through it. However, complete and exact BC computation for a large-scale graph is an extraordinary challenge that requires high performance computing techniques to provide results in a reasonable amount of time. Our approach combines bi-dimensional (2-D) decomposition of the graph and multi-level parallelism together with a suitable data-thread mapping that overcomes most of the difficulties caused by the irregularity of the computation on GPUs. In order to reduce time and space requirements of BC computation, a heuristics based on 1-degree reduction technique is developed as well. Experimental results on synthetic and real-world graphs show that the proposed techniques are well suited to compute BC scores in graphs which are too large to fit in the memory of a single computational node.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Big data analytics and the LHC Using colored petri nets for GPGPU performance modeling Predictive modeling based power estimation for embedded multicore systems Boosting performance of directory-based cache coherence protocols with coherence bypass at subpage granularity and a novel on-chip page table Prototyping real-time tracking systems on mobile devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1