Romain Chayot, N. Thomas, C. Poulliat, M. Boucheret, N. V. Wambeke, G. Lesthievent
{"title":"CPM信道估计与均衡及其在卫星链路航空通信中的应用","authors":"Romain Chayot, N. Thomas, C. Poulliat, M. Boucheret, N. V. Wambeke, G. Lesthievent","doi":"10.1109/MILCOM.2017.8170746","DOIUrl":null,"url":null,"abstract":"In this paper, we present a generalized polyphase representation for Continuous Phase Modulation (CPM) signals suited to the detection over frequency-selective channels. We first develop two different equalizers based on this representation and relate them to the State of Art. We also derive a Least Squares (LS) channel estimation and an improved LS estimation using a priori on the channel. Simulation results show the equivalence between existing equalizers and also show that our channel estimation leads only to a small degradation in term of Bit Error Rate (BER) in the case of an aeronautical communication over a satellite link.","PeriodicalId":113767,"journal":{"name":"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Channel estimation and equalization for CPM with application for aeronautical communications via a satellite link\",\"authors\":\"Romain Chayot, N. Thomas, C. Poulliat, M. Boucheret, N. V. Wambeke, G. Lesthievent\",\"doi\":\"10.1109/MILCOM.2017.8170746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a generalized polyphase representation for Continuous Phase Modulation (CPM) signals suited to the detection over frequency-selective channels. We first develop two different equalizers based on this representation and relate them to the State of Art. We also derive a Least Squares (LS) channel estimation and an improved LS estimation using a priori on the channel. Simulation results show the equivalence between existing equalizers and also show that our channel estimation leads only to a small degradation in term of Bit Error Rate (BER) in the case of an aeronautical communication over a satellite link.\",\"PeriodicalId\":113767,\"journal\":{\"name\":\"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM.2017.8170746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2017.8170746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Channel estimation and equalization for CPM with application for aeronautical communications via a satellite link
In this paper, we present a generalized polyphase representation for Continuous Phase Modulation (CPM) signals suited to the detection over frequency-selective channels. We first develop two different equalizers based on this representation and relate them to the State of Art. We also derive a Least Squares (LS) channel estimation and an improved LS estimation using a priori on the channel. Simulation results show the equivalence between existing equalizers and also show that our channel estimation leads only to a small degradation in term of Bit Error Rate (BER) in the case of an aeronautical communication over a satellite link.