{"title":"基于U-Net的端到端虹膜分割","authors":"Jus Lozej, Blaž Meden, V. Štruc, P. Peer","doi":"10.1109/IWOBI.2018.8464213","DOIUrl":null,"url":null,"abstract":"Iris segmentation is an important research topic that received significant attention from the research community over the years. Traditional iris segmentation techniques have typically been focused on hand-crafted procedures that, nonetheless, achieved remarkable segmentation performance even with images captured in difficult settings. With the success of deep-learning models, researchers are increasingly looking towards convolutional neural networks (CNNs) to further improve on the accuracy of existing iris segmentation techniques and several CNN-based techniques have already been presented recently in the literature. In this paper we also consider deep-learning models for iris segmentation and present an iris segmentation approach based on the popular U-Net architecture. Our model is trainable end-to-end and, hence, avoids the need for hand designing the segmentation procedure. We evaluate the model on the CASIA dataset and report encouraging results in comparison to existing techniques used in this area.","PeriodicalId":127078,"journal":{"name":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"End-to-End Iris Segmentation Using U-Net\",\"authors\":\"Jus Lozej, Blaž Meden, V. Štruc, P. Peer\",\"doi\":\"10.1109/IWOBI.2018.8464213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iris segmentation is an important research topic that received significant attention from the research community over the years. Traditional iris segmentation techniques have typically been focused on hand-crafted procedures that, nonetheless, achieved remarkable segmentation performance even with images captured in difficult settings. With the success of deep-learning models, researchers are increasingly looking towards convolutional neural networks (CNNs) to further improve on the accuracy of existing iris segmentation techniques and several CNN-based techniques have already been presented recently in the literature. In this paper we also consider deep-learning models for iris segmentation and present an iris segmentation approach based on the popular U-Net architecture. Our model is trainable end-to-end and, hence, avoids the need for hand designing the segmentation procedure. We evaluate the model on the CASIA dataset and report encouraging results in comparison to existing techniques used in this area.\",\"PeriodicalId\":127078,\"journal\":{\"name\":\"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWOBI.2018.8464213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2018.8464213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iris segmentation is an important research topic that received significant attention from the research community over the years. Traditional iris segmentation techniques have typically been focused on hand-crafted procedures that, nonetheless, achieved remarkable segmentation performance even with images captured in difficult settings. With the success of deep-learning models, researchers are increasingly looking towards convolutional neural networks (CNNs) to further improve on the accuracy of existing iris segmentation techniques and several CNN-based techniques have already been presented recently in the literature. In this paper we also consider deep-learning models for iris segmentation and present an iris segmentation approach based on the popular U-Net architecture. Our model is trainable end-to-end and, hence, avoids the need for hand designing the segmentation procedure. We evaluate the model on the CASIA dataset and report encouraging results in comparison to existing techniques used in this area.