{"title":"多模型智能自适应控制","authors":"Dimitar Filev, T. Larsson","doi":"10.1109/ISIC.2001.971528","DOIUrl":null,"url":null,"abstract":"We develop a new intelligent adaptive control algorithm that is applicable to systems with large parameters variations and multiple operating modes. It uses a set of models, called the dynamic model bank, that guides the adaptation process. The dynamic model bank summarizes the parameters of the models that successfully approximate the plant. The model bank is automatically created and updated and does not call for an initial set of models. It uses a soft switching mechanism that provides a smooth transition from an interpolative to a pure \"hard\" switching scheme between the models in the bank. We also demonstrate the advantage of using this approach on several examples considering the control of systems with large parameter variations.","PeriodicalId":367430,"journal":{"name":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Intelligent adaptive control using multiple models\",\"authors\":\"Dimitar Filev, T. Larsson\",\"doi\":\"10.1109/ISIC.2001.971528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a new intelligent adaptive control algorithm that is applicable to systems with large parameters variations and multiple operating modes. It uses a set of models, called the dynamic model bank, that guides the adaptation process. The dynamic model bank summarizes the parameters of the models that successfully approximate the plant. The model bank is automatically created and updated and does not call for an initial set of models. It uses a soft switching mechanism that provides a smooth transition from an interpolative to a pure \\\"hard\\\" switching scheme between the models in the bank. We also demonstrate the advantage of using this approach on several examples considering the control of systems with large parameter variations.\",\"PeriodicalId\":367430,\"journal\":{\"name\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2001.971528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2001.971528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了一种新的智能自适应控制算法,适用于参数变化大、多工作模式的系统。它使用一套被称为动态模型库的模型来指导适应过程。动态模型库总结了成功逼近对象的模型的参数。模型库是自动创建和更新的,不需要初始模型集。它使用软切换机制,在库中的模型之间提供从插值到纯“硬”切换方案的平滑过渡。我们还在考虑具有大参数变化的系统控制的几个例子中证明了使用这种方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent adaptive control using multiple models
We develop a new intelligent adaptive control algorithm that is applicable to systems with large parameters variations and multiple operating modes. It uses a set of models, called the dynamic model bank, that guides the adaptation process. The dynamic model bank summarizes the parameters of the models that successfully approximate the plant. The model bank is automatically created and updated and does not call for an initial set of models. It uses a soft switching mechanism that provides a smooth transition from an interpolative to a pure "hard" switching scheme between the models in the bank. We also demonstrate the advantage of using this approach on several examples considering the control of systems with large parameter variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial neural networks as a biomass virtual sensor for a batch process Imitating the human immune system capabilities for multi-agent federation formation Fault diagnosis reasoning for set-membership approaches and application Asymptotic stability of fuzzy systems Synthesis of ladder diagrams from Petri nets controller models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1