CoGenTe:一个代码生成器测试工具

A. Rajeev, P. Sampath, K. Shashidhar, S. Ramesh
{"title":"CoGenTe:一个代码生成器测试工具","authors":"A. Rajeev, P. Sampath, K. Shashidhar, S. Ramesh","doi":"10.1145/1858996.1859070","DOIUrl":null,"url":null,"abstract":"We present the CoGenTe tool for automated black-box testing of code generators. A code generator is a program that takes a model in a high-level modeling language as input, and outputs a program that captures the behaviour of the model. Thus, a code generator's input and output are complex objects having not just syntactic structure but execution semantics, too. Hence, traditional test generation methods that take only syntax into account are not effective in testing code generators. CoGenTe amends this by incorporating various coverage criteria over semantics. This enables it to generate test-cases with a higher potential of revealing subtle semantic errors in code generators. CoGenTe has uncovered such issues in widely used real-life code generators: (i) lexical analyzer generators Flex and JFlex, and (ii) The MathWorks' simulator/code generator for Stateflow.","PeriodicalId":341489,"journal":{"name":"Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"CoGenTe: a tool for code generator testing\",\"authors\":\"A. Rajeev, P. Sampath, K. Shashidhar, S. Ramesh\",\"doi\":\"10.1145/1858996.1859070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the CoGenTe tool for automated black-box testing of code generators. A code generator is a program that takes a model in a high-level modeling language as input, and outputs a program that captures the behaviour of the model. Thus, a code generator's input and output are complex objects having not just syntactic structure but execution semantics, too. Hence, traditional test generation methods that take only syntax into account are not effective in testing code generators. CoGenTe amends this by incorporating various coverage criteria over semantics. This enables it to generate test-cases with a higher potential of revealing subtle semantic errors in code generators. CoGenTe has uncovered such issues in widely used real-life code generators: (i) lexical analyzer generators Flex and JFlex, and (ii) The MathWorks' simulator/code generator for Stateflow.\",\"PeriodicalId\":341489,\"journal\":{\"name\":\"Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1858996.1859070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1858996.1859070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了CoGenTe工具,用于代码生成器的自动黑盒测试。代码生成器是一种程序,它以高级建模语言中的模型作为输入,并输出捕获模型行为的程序。因此,代码生成器的输入和输出是复杂的对象,不仅具有语法结构,还具有执行语义。因此,传统的只考虑语法的测试生成方法在测试代码生成器时是无效的。CoGenTe通过在语义上合并各种覆盖标准来修正这一点。这使它能够生成具有更高潜力的测试用例,以揭示代码生成器中细微的语义错误。CoGenTe已经在广泛使用的现实生活代码生成器中发现了这样的问题:(i)词法分析器生成器Flex和JFlex,以及(ii) MathWorks用于statflow的模拟器/代码生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CoGenTe: a tool for code generator testing
We present the CoGenTe tool for automated black-box testing of code generators. A code generator is a program that takes a model in a high-level modeling language as input, and outputs a program that captures the behaviour of the model. Thus, a code generator's input and output are complex objects having not just syntactic structure but execution semantics, too. Hence, traditional test generation methods that take only syntax into account are not effective in testing code generators. CoGenTe amends this by incorporating various coverage criteria over semantics. This enables it to generate test-cases with a higher potential of revealing subtle semantic errors in code generators. CoGenTe has uncovered such issues in widely used real-life code generators: (i) lexical analyzer generators Flex and JFlex, and (ii) The MathWorks' simulator/code generator for Stateflow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Error-avoiding adaptors for black-box software components Automatically documenting program changes Detection of recurring software vulnerabilities Search-carrying code Automated SQL query generation for systematic testing of database engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1