分析和改进自治系统的弹性和鲁棒性(特邀论文)

Zishen Wan, Karthik Swaminathan, Pin-Yu Chen, Nandhini Chandramoorthy, A. Raychowdhury
{"title":"分析和改进自治系统的弹性和鲁棒性(特邀论文)","authors":"Zishen Wan, Karthik Swaminathan, Pin-Yu Chen, Nandhini Chandramoorthy, A. Raychowdhury","doi":"10.1145/3508352.3561111","DOIUrl":null,"url":null,"abstract":"Autonomous systems have reached a tipping point, with a myriad of self-driving cars, unmanned aerial vehicles (UAVs), and robots being widely applied and revolutionizing new applications. The continuous deployment of autonomous systems reveals the need for designs that facilitate increased resiliency and safety. The ability of an autonomous system to tolerate, or mitigate against errors, such as environmental conditions, sensor, hardware and software faults, and adversarial attacks, is essential to ensure its functional safety. Application-aware resilience metrics, holistic fault analysis frameworks, and lightweight fault mitigation techniques are being proposed for accurate and effective resilience and robustness assessment and improvement. This paper explores the origination of fault sources across the computing stack of autonomous systems, discusses the various fault impacts and fault mitigation techniques of different scales of autonomous systems, and concludes with challenges and opportunities for assessing and building next-generation resilient and robust autonomous systems.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analyzing and Improving Resilience and Robustness of Autonomous Systems (Invited Paper)\",\"authors\":\"Zishen Wan, Karthik Swaminathan, Pin-Yu Chen, Nandhini Chandramoorthy, A. Raychowdhury\",\"doi\":\"10.1145/3508352.3561111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous systems have reached a tipping point, with a myriad of self-driving cars, unmanned aerial vehicles (UAVs), and robots being widely applied and revolutionizing new applications. The continuous deployment of autonomous systems reveals the need for designs that facilitate increased resiliency and safety. The ability of an autonomous system to tolerate, or mitigate against errors, such as environmental conditions, sensor, hardware and software faults, and adversarial attacks, is essential to ensure its functional safety. Application-aware resilience metrics, holistic fault analysis frameworks, and lightweight fault mitigation techniques are being proposed for accurate and effective resilience and robustness assessment and improvement. This paper explores the origination of fault sources across the computing stack of autonomous systems, discusses the various fault impacts and fault mitigation techniques of different scales of autonomous systems, and concludes with challenges and opportunities for assessing and building next-generation resilient and robust autonomous systems.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3561111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3561111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自动驾驶系统已经达到了一个临界点,无数的自动驾驶汽车、无人驾驶飞行器(uav)和机器人被广泛应用,并带来了革命性的新应用。自动系统的不断部署表明,需要设计出能够提高弹性和安全性的设计。自主系统容忍或减轻诸如环境条件、传感器、硬件和软件故障以及对抗性攻击等错误的能力对于确保其功能安全至关重要。应用感知的弹性度量、整体故障分析框架和轻量级故障缓解技术被提出用于准确和有效的弹性和鲁棒性评估和改进。本文探讨了跨自治系统计算堆栈的故障源的起源,讨论了不同规模自治系统的各种故障影响和故障缓解技术,并总结了评估和构建下一代弹性和鲁棒自治系统的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing and Improving Resilience and Robustness of Autonomous Systems (Invited Paper)
Autonomous systems have reached a tipping point, with a myriad of self-driving cars, unmanned aerial vehicles (UAVs), and robots being widely applied and revolutionizing new applications. The continuous deployment of autonomous systems reveals the need for designs that facilitate increased resiliency and safety. The ability of an autonomous system to tolerate, or mitigate against errors, such as environmental conditions, sensor, hardware and software faults, and adversarial attacks, is essential to ensure its functional safety. Application-aware resilience metrics, holistic fault analysis frameworks, and lightweight fault mitigation techniques are being proposed for accurate and effective resilience and robustness assessment and improvement. This paper explores the origination of fault sources across the computing stack of autonomous systems, discusses the various fault impacts and fault mitigation techniques of different scales of autonomous systems, and concludes with challenges and opportunities for assessing and building next-generation resilient and robust autonomous systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Squeezing Accumulators in Binary Neural Networks for Extremely Resource-Constrained Applications Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation Towards High Performance and Accurate BNN Inference on FPGA with Structured Fine-grained Pruning RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering Design and Technology Co-optimization Utilizing Multi-bit Flip-flop Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1