在核特征空间中基于位置的字典编码实现人脸幻觉

Wenming Yang, T. Yuan, Fei Zhou, Q. Liao
{"title":"在核特征空间中基于位置的字典编码实现人脸幻觉","authors":"Wenming Yang, T. Yuan, Fei Zhou, Q. Liao","doi":"10.1109/SMARTCOMP.2014.7043850","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new method to reconstruct a high-resolution (HR) face image from a low-resolution (LR) observation. Inspired by position-patch based face hallucination approach, we design position-based dictionaries to code image patches, and recovery HR patch using the coding coefficients as reconstruction weights. In order to capture nonlinear similarity of face features, we implicitly map the data into a high dimensional feature space. By applying kernel principal analysis (KPCA) on the mapped data in the high dimensional feature space, we can obtain reconstruction coefficients in a reduced subspace. Experimental results show that the proposed method can effectively reconstruct details of face images and outperform state-of-the-art algorithms in both quantitative and visual comparisons.","PeriodicalId":169858,"journal":{"name":"2014 International Conference on Smart Computing","volume":"53 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Face hallucination via position-based dictionaries coding in kernel feature space\",\"authors\":\"Wenming Yang, T. Yuan, Fei Zhou, Q. Liao\",\"doi\":\"10.1109/SMARTCOMP.2014.7043850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new method to reconstruct a high-resolution (HR) face image from a low-resolution (LR) observation. Inspired by position-patch based face hallucination approach, we design position-based dictionaries to code image patches, and recovery HR patch using the coding coefficients as reconstruction weights. In order to capture nonlinear similarity of face features, we implicitly map the data into a high dimensional feature space. By applying kernel principal analysis (KPCA) on the mapped data in the high dimensional feature space, we can obtain reconstruction coefficients in a reduced subspace. Experimental results show that the proposed method can effectively reconstruct details of face images and outperform state-of-the-art algorithms in both quantitative and visual comparisons.\",\"PeriodicalId\":169858,\"journal\":{\"name\":\"2014 International Conference on Smart Computing\",\"volume\":\"53 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Smart Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP.2014.7043850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Smart Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP.2014.7043850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种从低分辨率(LR)观测中重建高分辨率(HR)人脸图像的新方法。受基于位置补丁的人脸幻觉方法的启发,我们设计了基于位置的字典来编码图像补丁,并使用编码系数作为重建权重来恢复HR补丁。为了捕获人脸特征的非线性相似性,我们隐式地将数据映射到高维特征空间中。通过对高维特征空间中的映射数据进行核主分析(KPCA),可以得到约简子空间中的重构系数。实验结果表明,该方法可以有效地重建人脸图像的细节,并且在定量和视觉比较方面都优于现有的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face hallucination via position-based dictionaries coding in kernel feature space
In this paper, we present a new method to reconstruct a high-resolution (HR) face image from a low-resolution (LR) observation. Inspired by position-patch based face hallucination approach, we design position-based dictionaries to code image patches, and recovery HR patch using the coding coefficients as reconstruction weights. In order to capture nonlinear similarity of face features, we implicitly map the data into a high dimensional feature space. By applying kernel principal analysis (KPCA) on the mapped data in the high dimensional feature space, we can obtain reconstruction coefficients in a reduced subspace. Experimental results show that the proposed method can effectively reconstruct details of face images and outperform state-of-the-art algorithms in both quantitative and visual comparisons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classifying Smart Objects using capabilities Gas mixture control system for oxygen therapy in pre-term infants Harmful algal blooms prediction with machine learning models in Tolo Harbour Facial expression recognition and generation using sparse autoencoder A MAP estimation based segmentation model for speckled images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1