基于混合NTLD分类器的人体动作识别

A. Rani, Sanjeev Kumar, C. Micheloni, G. Foresti
{"title":"基于混合NTLD分类器的人体动作识别","authors":"A. Rani, Sanjeev Kumar, C. Micheloni, G. Foresti","doi":"10.1109/AVSS.2010.11","DOIUrl":null,"url":null,"abstract":"This work proposes a hybrid classifier to recognize humanactions in different contexts. In particular, the proposedhybrid classifier (a neural tree with linear discriminantnodes NTLD), is a neural tree whose nodes can be eithersimple preceptrons or recursive fisher linear discriminant(RFLD) classifiers. A novel technique to substitute badtrained perceptron with more performant linear discriminatorsis introduced. For a given frame, geometrical featuresare extracted from the skeleton of the human blob (silhouette).These geometrical features are collected for a fixednumber of consecutive frames to recognize the correspondingactivity. The resulting feature vector is adopted as inputto the NTLD classifier. The performance of the proposedclassifier has been evaluated on two available databases.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Human Action Recognition using a Hybrid NTLD Classifier\",\"authors\":\"A. Rani, Sanjeev Kumar, C. Micheloni, G. Foresti\",\"doi\":\"10.1109/AVSS.2010.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a hybrid classifier to recognize humanactions in different contexts. In particular, the proposedhybrid classifier (a neural tree with linear discriminantnodes NTLD), is a neural tree whose nodes can be eithersimple preceptrons or recursive fisher linear discriminant(RFLD) classifiers. A novel technique to substitute badtrained perceptron with more performant linear discriminatorsis introduced. For a given frame, geometrical featuresare extracted from the skeleton of the human blob (silhouette).These geometrical features are collected for a fixednumber of consecutive frames to recognize the correspondingactivity. The resulting feature vector is adopted as inputto the NTLD classifier. The performance of the proposedclassifier has been evaluated on two available databases.\",\"PeriodicalId\":415758,\"journal\":{\"name\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2010.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作提出了一种混合分类器来识别不同背景下的人类行为。特别是,所提出的混合分类器(具有线性判别节点的神经树NTLD)是一种神经树,其节点可以是简单感知器或递归fisher线性判别(RFLD)分类器。介绍了一种用性能更好的线性判别器代替训练不好的感知器的新方法。对于给定的帧,从人体斑点(轮廓)的骨架中提取几何特征。在固定数量的连续帧中收集这些几何特征以识别相应的活动。将得到的特征向量作为NTLD分类器的输入。在两个可用的数据库上对所提出的分类器的性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human Action Recognition using a Hybrid NTLD Classifier
This work proposes a hybrid classifier to recognize humanactions in different contexts. In particular, the proposedhybrid classifier (a neural tree with linear discriminantnodes NTLD), is a neural tree whose nodes can be eithersimple preceptrons or recursive fisher linear discriminant(RFLD) classifiers. A novel technique to substitute badtrained perceptron with more performant linear discriminatorsis introduced. For a given frame, geometrical featuresare extracted from the skeleton of the human blob (silhouette).These geometrical features are collected for a fixednumber of consecutive frames to recognize the correspondingactivity. The resulting feature vector is adopted as inputto the NTLD classifier. The performance of the proposedclassifier has been evaluated on two available databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1