度量旅行商问题的自适应混合量子算法

Fei Li, A. Mazumder
{"title":"度量旅行商问题的自适应混合量子算法","authors":"Fei Li, A. Mazumder","doi":"10.1109/IPDPS54959.2023.00082","DOIUrl":null,"url":null,"abstract":"In this paper, we design, analyze, and evaluate a hybrid quantum algorithm for the metric traveling salesman problem (TSP). TSP is a well-studied NP-complete problem that many algorithmic techniques have been developed for, on both classic computers and quantum computers. The existing literature of algorithms for TSP are neither adaptive to input data nor suitable for processing medium-size data on the modern classic and quantum machines. In this work, we leverage the classic computers’ power (large memory) and the quantum computers’ power (quantum parallelism), based on the input data, to fasten the hybrid algorithm’s overall running time. Our algorithmic ideas include trimming the input data efficiently using a classic algorithm, finding an optimal solution for the post-processed data using a quantum-only algorithm, and constructing an optimal solution for the untrimmed data input efficiently using a classic algorithm. We conduct experiments to compare our hybrid algorithm against the state-of-the-art classic and quantum algorithms on real data sets. The experimental results show that our solution truly outperforms the others and thus confirm our theoretical analysis. This work provides insightful quantitative tools for people and compilers to choose appropriate quantum or classical or hybrid algorithms, especially in the NISQ (noisy intermediate-scale quantum) era, for NP-complete problems such as TSP.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Hybrid Quantum Algorithm for the Metric Traveling Salesman Problem\",\"authors\":\"Fei Li, A. Mazumder\",\"doi\":\"10.1109/IPDPS54959.2023.00082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we design, analyze, and evaluate a hybrid quantum algorithm for the metric traveling salesman problem (TSP). TSP is a well-studied NP-complete problem that many algorithmic techniques have been developed for, on both classic computers and quantum computers. The existing literature of algorithms for TSP are neither adaptive to input data nor suitable for processing medium-size data on the modern classic and quantum machines. In this work, we leverage the classic computers’ power (large memory) and the quantum computers’ power (quantum parallelism), based on the input data, to fasten the hybrid algorithm’s overall running time. Our algorithmic ideas include trimming the input data efficiently using a classic algorithm, finding an optimal solution for the post-processed data using a quantum-only algorithm, and constructing an optimal solution for the untrimmed data input efficiently using a classic algorithm. We conduct experiments to compare our hybrid algorithm against the state-of-the-art classic and quantum algorithms on real data sets. The experimental results show that our solution truly outperforms the others and thus confirm our theoretical analysis. This work provides insightful quantitative tools for people and compilers to choose appropriate quantum or classical or hybrid algorithms, especially in the NISQ (noisy intermediate-scale quantum) era, for NP-complete problems such as TSP.\",\"PeriodicalId\":343684,\"journal\":{\"name\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS54959.2023.00082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文设计、分析并评价了一种用于度量旅行商问题(TSP)的混合量子算法。TSP是一个被充分研究的np完全问题,许多算法技术已经在经典计算机和量子计算机上开发出来。现有的TSP算法文献既不适应输入数据,也不适合在现代经典机器和量子机器上处理中等规模的数据。在这项工作中,我们利用经典计算机的能力(大内存)和量子计算机的能力(量子并行性),基于输入数据,加快混合算法的整体运行时间。我们的算法思想包括使用经典算法有效地修剪输入数据,使用纯量子算法为后处理数据找到最优解,以及使用经典算法有效地为未修剪的数据输入构建最优解。我们进行了实验,将我们的混合算法与最先进的经典算法和量子算法在实际数据集上进行比较。实验结果表明,我们的解决方案确实优于其他方案,从而证实了我们的理论分析。这项工作为人们和编译者提供了有洞察力的定量工具,以选择适当的量子或经典或混合算法,特别是在NISQ(噪声中等规模量子)时代,用于np完全问题,如TSP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Adaptive Hybrid Quantum Algorithm for the Metric Traveling Salesman Problem
In this paper, we design, analyze, and evaluate a hybrid quantum algorithm for the metric traveling salesman problem (TSP). TSP is a well-studied NP-complete problem that many algorithmic techniques have been developed for, on both classic computers and quantum computers. The existing literature of algorithms for TSP are neither adaptive to input data nor suitable for processing medium-size data on the modern classic and quantum machines. In this work, we leverage the classic computers’ power (large memory) and the quantum computers’ power (quantum parallelism), based on the input data, to fasten the hybrid algorithm’s overall running time. Our algorithmic ideas include trimming the input data efficiently using a classic algorithm, finding an optimal solution for the post-processed data using a quantum-only algorithm, and constructing an optimal solution for the untrimmed data input efficiently using a classic algorithm. We conduct experiments to compare our hybrid algorithm against the state-of-the-art classic and quantum algorithms on real data sets. The experimental results show that our solution truly outperforms the others and thus confirm our theoretical analysis. This work provides insightful quantitative tools for people and compilers to choose appropriate quantum or classical or hybrid algorithms, especially in the NISQ (noisy intermediate-scale quantum) era, for NP-complete problems such as TSP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-Accelerated Error-Bounded Compression Framework for Quantum Circuit Simulations Generalizable Reinforcement Learning-Based Coarsening Model for Resource Allocation over Large and Diverse Stream Processing Graphs Smart Redbelly Blockchain: Reducing Congestion for Web3 QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML Workflows Fast Sparse GPU Kernels for Accelerated Training of Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1