Sebek系统监测的动态滤波技术

E. Balas, G. Travis, C. Viecco
{"title":"Sebek系统监测的动态滤波技术","authors":"E. Balas, G. Travis, C. Viecco","doi":"10.1109/IAW.2006.1652106","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the performance limits of system call based monitoring tools using the Linux version of Sebek as a focal point. We quantify the amount of uninteresting data that it collects and illustrate the problems that this creates: detection of Sebek, amount of work to analyze data, and data privacy. To mitigate these problems we propose a dynamic filtering technique. Finally we evaluate the performance of an implementation of this technique","PeriodicalId":326306,"journal":{"name":"2006 IEEE Information Assurance Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Dynamic Filtering Technique for Sebek System Monitoring\",\"authors\":\"E. Balas, G. Travis, C. Viecco\",\"doi\":\"10.1109/IAW.2006.1652106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the performance limits of system call based monitoring tools using the Linux version of Sebek as a focal point. We quantify the amount of uninteresting data that it collects and illustrate the problems that this creates: detection of Sebek, amount of work to analyze data, and data privacy. To mitigate these problems we propose a dynamic filtering technique. Finally we evaluate the performance of an implementation of this technique\",\"PeriodicalId\":326306,\"journal\":{\"name\":\"2006 IEEE Information Assurance Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Information Assurance Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAW.2006.1652106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Assurance Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAW.2006.1652106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们以Linux版本的Sebek为重点,研究了基于系统调用的监控工具的性能限制。我们量化了它收集的无趣数据的数量,并说明了由此产生的问题:Sebek检测、分析数据的工作量以及数据隐私。为了缓解这些问题,我们提出了一种动态过滤技术。最后,我们对该技术的一个实现进行了性能评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Dynamic Filtering Technique for Sebek System Monitoring
In this paper we investigate the performance limits of system call based monitoring tools using the Linux version of Sebek as a focal point. We quantify the amount of uninteresting data that it collects and illustrate the problems that this creates: detection of Sebek, amount of work to analyze data, and data privacy. To mitigate these problems we propose a dynamic filtering technique. Finally we evaluate the performance of an implementation of this technique
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a Threat Model for Enterprise Storage Area Networks Automatically Building an Information-Security Vulnerability Database Analyzing Attack Trees using Generalized Stochastic Petri Nets Secure State Processing Visual Reverse Turing Tests: A False Sense of Security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1