车间作业调度问题的一种更有效的拉格朗日松弛法

Haoxun Chen, C. Chu, J. Proth
{"title":"车间作业调度问题的一种更有效的拉格朗日松弛法","authors":"Haoxun Chen, C. Chu, J. Proth","doi":"10.1109/ROBOT.1995.525332","DOIUrl":null,"url":null,"abstract":"Lagrangian relaxation consists of relaxing capacity constraints using Lagrangian multipliers and of decomposing the problem into job level subproblems. In the literature, when job shop scheduling problems are considered, these subproblems are further decomposed into operation level subproblems by relaxing precedence constraints. Unfortunately, this results in solution oscillation and often prevents convergence of the algorithm. Although several methods have been proposed to avoid solution oscillation, none of them is really satisfactory. In this paper, we propose an efficient pseudopolynomial time dynamic programming algorithm to solve relaxed job level subproblems. This makes the relaxation of precedence constraints unnecessary. The solution oscillation can then be avoided. This algorithm also results in a much more efficient Lagrangian relaxation approach to job-shop scheduling problems. Computational results on randomly generated problems are given to demonstrate the efficiency of the algorithm.","PeriodicalId":432931,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Robotics and Automation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"A more efficient Lagrangian relaxation approach to job-shop scheduling problems\",\"authors\":\"Haoxun Chen, C. Chu, J. Proth\",\"doi\":\"10.1109/ROBOT.1995.525332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lagrangian relaxation consists of relaxing capacity constraints using Lagrangian multipliers and of decomposing the problem into job level subproblems. In the literature, when job shop scheduling problems are considered, these subproblems are further decomposed into operation level subproblems by relaxing precedence constraints. Unfortunately, this results in solution oscillation and often prevents convergence of the algorithm. Although several methods have been proposed to avoid solution oscillation, none of them is really satisfactory. In this paper, we propose an efficient pseudopolynomial time dynamic programming algorithm to solve relaxed job level subproblems. This makes the relaxation of precedence constraints unnecessary. The solution oscillation can then be avoided. This algorithm also results in a much more efficient Lagrangian relaxation approach to job-shop scheduling problems. Computational results on randomly generated problems are given to demonstrate the efficiency of the algorithm.\",\"PeriodicalId\":432931,\"journal\":{\"name\":\"Proceedings of 1995 IEEE International Conference on Robotics and Automation\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1995 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1995.525332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1995.525332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

拉格朗日松弛包括利用拉格朗日乘子松弛容量约束和将问题分解为作业级子问题。在文献中,当考虑作业车间调度问题时,通过放宽优先约束,将这些子问题进一步分解为操作级子问题。不幸的是,这导致解振荡,并经常阻止算法的收敛。虽然提出了几种避免解振荡的方法,但没有一种是真正令人满意的。本文提出了一种求解松弛作业级子问题的有效伪多项式时间动态规划算法。这使得没有必要放松优先级约束。这样就可以避免溶液振荡。该算法还为车间作业调度问题提供了一种更有效的拉格朗日松弛方法。最后给出了随机生成问题的计算结果,证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A more efficient Lagrangian relaxation approach to job-shop scheduling problems
Lagrangian relaxation consists of relaxing capacity constraints using Lagrangian multipliers and of decomposing the problem into job level subproblems. In the literature, when job shop scheduling problems are considered, these subproblems are further decomposed into operation level subproblems by relaxing precedence constraints. Unfortunately, this results in solution oscillation and often prevents convergence of the algorithm. Although several methods have been proposed to avoid solution oscillation, none of them is really satisfactory. In this paper, we propose an efficient pseudopolynomial time dynamic programming algorithm to solve relaxed job level subproblems. This makes the relaxation of precedence constraints unnecessary. The solution oscillation can then be avoided. This algorithm also results in a much more efficient Lagrangian relaxation approach to job-shop scheduling problems. Computational results on randomly generated problems are given to demonstrate the efficiency of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensorless Manipulation Using Transverse Vibrations of a Plate A four-wheeled robot to pass over steps by changing running control modes Fundamental considerations for the design of a planetary rover Handy rangefinder for active robot vision A foveated wide angle lens for active vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1