具有离散持续时间的回归不连续设计的半非参数估计

Ke-Li Xu
{"title":"具有离散持续时间的回归不连续设计的半非参数估计","authors":"Ke-Li Xu","doi":"10.2139/ssrn.3095673","DOIUrl":null,"url":null,"abstract":"Abstract We consider the regression discontinuity (RD) design with the duration outcome which has discrete support. The parameters of policy interest are treatment effects on unconditional (duration effect) and conditional (hazard effect) exiting probabilities for each discrete level. We propose a novel semi-nonparametric estimator which exploits a flexible separability structure of the underlying continuous-time duration process. Simultaneous inference over discrete levels is nonstandard since the asymptotic variance matrix is singular with unknown rank. The peculiarity is delivered by the nature of the RD estimand, and we provide solutions. Random censoring and competing risks can also be allowed in our framework.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Semi-Nonparametric Estimator of Regression Discontinuity Design with Discrete Duration Outcomes\",\"authors\":\"Ke-Li Xu\",\"doi\":\"10.2139/ssrn.3095673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the regression discontinuity (RD) design with the duration outcome which has discrete support. The parameters of policy interest are treatment effects on unconditional (duration effect) and conditional (hazard effect) exiting probabilities for each discrete level. We propose a novel semi-nonparametric estimator which exploits a flexible separability structure of the underlying continuous-time duration process. Simultaneous inference over discrete levels is nonstandard since the asymptotic variance matrix is singular with unknown rank. The peculiarity is delivered by the nature of the RD estimand, and we provide solutions. Random censoring and competing risks can also be allowed in our framework.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3095673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3095673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要考虑具有离散支持的持续时间结果的回归不连续设计。政策利益的参数是对每个离散水平的无条件(持续时间效应)和条件(风险效应)退出概率的处理效应。我们提出了一种新的半非参数估计,它利用了底层连续时间持续过程的柔性可分性结构。离散水平上的同时推理是非标准的,因为渐近方差矩阵是奇异的且秩未知。这种特性是由RD需求的本质决定的,我们提供解决方案。我们的框架也允许随机审查和竞争风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Semi-Nonparametric Estimator of Regression Discontinuity Design with Discrete Duration Outcomes
Abstract We consider the regression discontinuity (RD) design with the duration outcome which has discrete support. The parameters of policy interest are treatment effects on unconditional (duration effect) and conditional (hazard effect) exiting probabilities for each discrete level. We propose a novel semi-nonparametric estimator which exploits a flexible separability structure of the underlying continuous-time duration process. Simultaneous inference over discrete levels is nonstandard since the asymptotic variance matrix is singular with unknown rank. The peculiarity is delivered by the nature of the RD estimand, and we provide solutions. Random censoring and competing risks can also be allowed in our framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Inference for Moment Condition Models without Rational Expectations Augmented cointegrating linear models with possibly strongly correlated stationary and nonstationary regressors regressors Structured Additive Regression and Tree Boosting Large-Scale Precision Matrix Estimation With SQUIC Error Correction Models and Regressions for Non-Cointegrated Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1