Marco Mazzucco, A. Ananthanarayan, R. Grossman, Jorge Levera, G. Rao
{"title":"高性能网络中基于公共密钥的多数据流合并","authors":"Marco Mazzucco, A. Ananthanarayan, R. Grossman, Jorge Levera, G. Rao","doi":"10.1109/SC.2002.10044","DOIUrl":null,"url":null,"abstract":"The model for data mining on streaming data assumes that there is a buffer of fixed length and a data stream of infinite length and the challenge is to extract patterns, changes, anomalies, and statistically significant structures by examining the data one time and storing records and derived attributes of length less than N. As data grids, data webs, and semantic webs become more common, mining distributed streaming data will become more and more important. The first step when presented with two or more distributed streams is to merge them using a common key. In this paper, we present two algorithms for merging streaming data using a common key. We also present experimental studies showing these algorithms scale in practice to OC-12 networks.","PeriodicalId":302800,"journal":{"name":"ACM/IEEE SC 2002 Conference (SC'02)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Merging Multiple Data Streams on Common Keys over High Performance Networks\",\"authors\":\"Marco Mazzucco, A. Ananthanarayan, R. Grossman, Jorge Levera, G. Rao\",\"doi\":\"10.1109/SC.2002.10044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The model for data mining on streaming data assumes that there is a buffer of fixed length and a data stream of infinite length and the challenge is to extract patterns, changes, anomalies, and statistically significant structures by examining the data one time and storing records and derived attributes of length less than N. As data grids, data webs, and semantic webs become more common, mining distributed streaming data will become more and more important. The first step when presented with two or more distributed streams is to merge them using a common key. In this paper, we present two algorithms for merging streaming data using a common key. We also present experimental studies showing these algorithms scale in practice to OC-12 networks.\",\"PeriodicalId\":302800,\"journal\":{\"name\":\"ACM/IEEE SC 2002 Conference (SC'02)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2002 Conference (SC'02)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2002.10044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2002 Conference (SC'02)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2002.10044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Merging Multiple Data Streams on Common Keys over High Performance Networks
The model for data mining on streaming data assumes that there is a buffer of fixed length and a data stream of infinite length and the challenge is to extract patterns, changes, anomalies, and statistically significant structures by examining the data one time and storing records and derived attributes of length less than N. As data grids, data webs, and semantic webs become more common, mining distributed streaming data will become more and more important. The first step when presented with two or more distributed streams is to merge them using a common key. In this paper, we present two algorithms for merging streaming data using a common key. We also present experimental studies showing these algorithms scale in practice to OC-12 networks.