基于鲁棒控制器和强化学习的永磁同步电机控制性能改进

M. Nicola, C. Nicola, C. Ionete, D. Sendrescu, M. Roman
{"title":"基于鲁棒控制器和强化学习的永磁同步电机控制性能改进","authors":"M. Nicola, C. Nicola, C. Ionete, D. Sendrescu, M. Roman","doi":"10.1109/ICSTCC55426.2022.9931844","DOIUrl":null,"url":null,"abstract":"This article presents a Permanent Magnet Synchronous Motor (PMSM) control system which retains its performance for a significant variation of the parameters and load torque which represent disturbance for the control system. Classically, the PMSM control system is built in the form of a Field Oriented Control (FOC) control strategy structure built around PI speed (outer loop) and current (inner loop) controllers. We present the design stages and the numerical simulations performed in Matlab/Simulink, which prove the superiority of the robust control, by comparison with the classic FOC-type control structure. Because the Reinforcement Learning Twin-Delayed Deep Deterministic Policy Gradient (RL-TD3) agent is the most suitable for machine learning for process control, we synthesize a robust controller whose control quantities $\\boldsymbol{u}_{d}$ and $\\boldsymbol{u}_{q}$ are adjusted by a properly created and trained RL-TD3 agent. Using this robust combined controller plus RL-TD3 agent, superior performance is achieved in terms of response time and speed ripple.","PeriodicalId":220845,"journal":{"name":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improved Performance for PMSM Control Based on Robust Controller and Reinforcement Learning\",\"authors\":\"M. Nicola, C. Nicola, C. Ionete, D. Sendrescu, M. Roman\",\"doi\":\"10.1109/ICSTCC55426.2022.9931844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a Permanent Magnet Synchronous Motor (PMSM) control system which retains its performance for a significant variation of the parameters and load torque which represent disturbance for the control system. Classically, the PMSM control system is built in the form of a Field Oriented Control (FOC) control strategy structure built around PI speed (outer loop) and current (inner loop) controllers. We present the design stages and the numerical simulations performed in Matlab/Simulink, which prove the superiority of the robust control, by comparison with the classic FOC-type control structure. Because the Reinforcement Learning Twin-Delayed Deep Deterministic Policy Gradient (RL-TD3) agent is the most suitable for machine learning for process control, we synthesize a robust controller whose control quantities $\\\\boldsymbol{u}_{d}$ and $\\\\boldsymbol{u}_{q}$ are adjusted by a properly created and trained RL-TD3 agent. Using this robust combined controller plus RL-TD3 agent, superior performance is achieved in terms of response time and speed ripple.\",\"PeriodicalId\":220845,\"journal\":{\"name\":\"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCC55426.2022.9931844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC55426.2022.9931844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种永磁同步电机控制系统,该系统在参数和负载转矩的显著变化下仍能保持控制系统的性能。传统的永磁同步电机控制系统以场定向控制(FOC)控制策略结构的形式构建,围绕PI速度(外环)和电流(内环)控制器。给出了设计阶段,并在Matlab/Simulink中进行了数值仿真,与经典的foco型控制结构进行了比较,证明了鲁棒控制的优越性。由于强化学习双延迟深度确定性策略梯度(RL-TD3)智能体最适合用于过程控制的机器学习,我们合成了一个鲁棒控制器,其控制量$\boldsymbol{u}_{d}$和$\boldsymbol{u}_{q}$由适当创建和训练的RL-TD3智能体调整。使用这种鲁棒组合控制器和RL-TD3代理,在响应时间和速度脉动方面实现了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Performance for PMSM Control Based on Robust Controller and Reinforcement Learning
This article presents a Permanent Magnet Synchronous Motor (PMSM) control system which retains its performance for a significant variation of the parameters and load torque which represent disturbance for the control system. Classically, the PMSM control system is built in the form of a Field Oriented Control (FOC) control strategy structure built around PI speed (outer loop) and current (inner loop) controllers. We present the design stages and the numerical simulations performed in Matlab/Simulink, which prove the superiority of the robust control, by comparison with the classic FOC-type control structure. Because the Reinforcement Learning Twin-Delayed Deep Deterministic Policy Gradient (RL-TD3) agent is the most suitable for machine learning for process control, we synthesize a robust controller whose control quantities $\boldsymbol{u}_{d}$ and $\boldsymbol{u}_{q}$ are adjusted by a properly created and trained RL-TD3 agent. Using this robust combined controller plus RL-TD3 agent, superior performance is achieved in terms of response time and speed ripple.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of 5G communication based on distance evaluation using the SIM8200EA-M2 module Using 3D Scanning Techniques from Robotic Applications in the Constructions Domain Chen-Fliess Series for Linear Distributed Systems with One Spatial Dimension Component generator for the development of RESTful APIs Sensitivity-Based Iterative State-Feedback Tuning for Nonlinear Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1