对私有数据的安全支持向量机分类器建模

M. Sumana, K. Hareesha
{"title":"对私有数据的安全支持向量机分类器建模","authors":"M. Sumana, K. Hareesha","doi":"10.1504/IJICS.2018.10010647","DOIUrl":null,"url":null,"abstract":"Privacy preserving data mining engrosses in drawing out information from distributed data without disclosing sensitive information to collaborating sites. This paper aims on the construction of a vertically distributed privacy preserving support vector machine classifier. The learning model is build for datasets, where one of the collaborating parties comprises the dependent attribute. Furthermore, the amount of privacy, computation speed and the accuracy of our classifier outperform other benchmark algorithms. Privacy of the perceptive attributes values of the cooperating sites are retained while performing secure computations. Collaborative classification is performed using these attributes. The site with the dependent attribute is the master site that initiates the process of secure computation to identify support vectors. Homomorphic property is used to protectively compute the data matrix on records/tuples available at sites. The recommended nonlinear privacy preserving classifier provides an accuracy equivalent to the non-privacy undistributed SVM classifier which uses all the attributes directly.","PeriodicalId":164016,"journal":{"name":"Int. J. Inf. Comput. Secur.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modelling a secure support vector machine classifier for private data\",\"authors\":\"M. Sumana, K. Hareesha\",\"doi\":\"10.1504/IJICS.2018.10010647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Privacy preserving data mining engrosses in drawing out information from distributed data without disclosing sensitive information to collaborating sites. This paper aims on the construction of a vertically distributed privacy preserving support vector machine classifier. The learning model is build for datasets, where one of the collaborating parties comprises the dependent attribute. Furthermore, the amount of privacy, computation speed and the accuracy of our classifier outperform other benchmark algorithms. Privacy of the perceptive attributes values of the cooperating sites are retained while performing secure computations. Collaborative classification is performed using these attributes. The site with the dependent attribute is the master site that initiates the process of secure computation to identify support vectors. Homomorphic property is used to protectively compute the data matrix on records/tuples available at sites. The recommended nonlinear privacy preserving classifier provides an accuracy equivalent to the non-privacy undistributed SVM classifier which uses all the attributes directly.\",\"PeriodicalId\":164016,\"journal\":{\"name\":\"Int. J. Inf. Comput. Secur.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Comput. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJICS.2018.10010647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJICS.2018.10010647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

保护隐私的数据挖掘专注于从分布式数据中提取信息,而不会向协作站点泄露敏感信息。本文旨在构建一个垂直分布的隐私保护支持向量机分类器。学习模型是为数据集构建的,其中一个协作方包含依赖属性。此外,我们的分类器在隐私量、计算速度和准确性方面都优于其他基准算法。在执行安全计算的同时,保留了协作站点的感知属性值的私密性。协作分类是使用这些属性执行的。具有依赖属性的站点是启动安全计算过程以识别支持向量的主站点。同态属性用于保护性地计算站点可用的记录/元组的数据矩阵。推荐的非线性隐私保护分类器提供了与直接使用所有属性的非隐私非分布SVM分类器相当的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling a secure support vector machine classifier for private data
Privacy preserving data mining engrosses in drawing out information from distributed data without disclosing sensitive information to collaborating sites. This paper aims on the construction of a vertically distributed privacy preserving support vector machine classifier. The learning model is build for datasets, where one of the collaborating parties comprises the dependent attribute. Furthermore, the amount of privacy, computation speed and the accuracy of our classifier outperform other benchmark algorithms. Privacy of the perceptive attributes values of the cooperating sites are retained while performing secure computations. Collaborative classification is performed using these attributes. The site with the dependent attribute is the master site that initiates the process of secure computation to identify support vectors. Homomorphic property is used to protectively compute the data matrix on records/tuples available at sites. The recommended nonlinear privacy preserving classifier provides an accuracy equivalent to the non-privacy undistributed SVM classifier which uses all the attributes directly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vulnerability discovery modelling: a general framework Modelling and visualising SSH brute force attack behaviours through a hybrid learning framework Empirical risk assessment of attack graphs using time to compromise framework Fault-based testing for discovering SQL injection vulnerabilities in web applications Leveraging Intel SGX to enable trusted and privacy preserving membership service in distributed ledgers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1