统计机器翻译对准模板模型的加权有限状态传感器实现

Shankar Kumar, W. Byrne
{"title":"统计机器翻译对准模板模型的加权有限状态传感器实现","authors":"Shankar Kumar, W. Byrne","doi":"10.3115/1073445.1073464","DOIUrl":null,"url":null,"abstract":"We present a derivation of the alignment template model for statistical machine translation and an implementation of the model using weighted finite state transducers. The approach we describe allows us to implement each constituent distribution of the model as a weighted finite state transducer or acceptor. We show that bitext word alignment and translation under the model can be performed with standard FSM operations involving these transducers. One of the benefits of using this framework is that it obviates the need to develop specialized search procedures, even for the generation of lattices or N-Best lists of bitext word alignments and translation hypotheses. We evaluate the implementation of the model on the French-to-English Hansards task and report alignment and translation performance.","PeriodicalId":277518,"journal":{"name":"Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - NAACL '03","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"A Weighted Finite State Transducer Implementation of the Alignment Template Model for Statistical Machine Translation\",\"authors\":\"Shankar Kumar, W. Byrne\",\"doi\":\"10.3115/1073445.1073464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a derivation of the alignment template model for statistical machine translation and an implementation of the model using weighted finite state transducers. The approach we describe allows us to implement each constituent distribution of the model as a weighted finite state transducer or acceptor. We show that bitext word alignment and translation under the model can be performed with standard FSM operations involving these transducers. One of the benefits of using this framework is that it obviates the need to develop specialized search procedures, even for the generation of lattices or N-Best lists of bitext word alignments and translation hypotheses. We evaluate the implementation of the model on the French-to-English Hansards task and report alignment and translation performance.\",\"PeriodicalId\":277518,\"journal\":{\"name\":\"Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - NAACL '03\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - NAACL '03\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1073445.1073464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - NAACL '03","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1073445.1073464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

摘要

我们提出了统计机器翻译的对齐模板模型的推导,并使用加权有限状态传感器实现了该模型。我们描述的方法允许我们将模型的每个组成分布实现为加权有限状态传感器或受体。我们证明了该模型下的文本对齐和翻译可以通过涉及这些换能器的标准FSM操作来执行。使用这个框架的好处之一是,它不需要开发专门的搜索过程,甚至不需要生成文本单词对齐和翻译假设的格或N-Best列表。我们评估了该模型在法语-英语备忘录任务中的实施情况,并报告了一致性和翻译绩效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Weighted Finite State Transducer Implementation of the Alignment Template Model for Statistical Machine Translation
We present a derivation of the alignment template model for statistical machine translation and an implementation of the model using weighted finite state transducers. The approach we describe allows us to implement each constituent distribution of the model as a weighted finite state transducer or acceptor. We show that bitext word alignment and translation under the model can be performed with standard FSM operations involving these transducers. One of the benefits of using this framework is that it obviates the need to develop specialized search procedures, even for the generation of lattices or N-Best lists of bitext word alignments and translation hypotheses. We evaluate the implementation of the model on the French-to-English Hansards task and report alignment and translation performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weakly Supervised Natural Language Learning Without Redundant Views Minimally Supervised Induction of Grammatical Gender Inducing History Representations for Broad Coverage Statistical Parsing Statistical Sentence Condensation using Ambiguity Packing and Stochastic Disambiguation Methods for Lexical-Functional Grammar A Weighted Finite State Transducer Implementation of the Alignment Template Model for Statistical Machine Translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1