Maximilian Bolingbroke, S. Jones, Dimitrios Vytiniotis
{"title":"永久终止组合子","authors":"Maximilian Bolingbroke, S. Jones, Dimitrios Vytiniotis","doi":"10.1145/2034675.2034680","DOIUrl":null,"url":null,"abstract":"We describe a library-based approach to constructing termination tests suitable for controlling termination of symbolic methods such as partial evaluation, supercompilation and theorem proving. With our combinators, all termination tests are correct by construction. We show how the library can be designed to embody various optimisations of the termination tests, which the user of the library takes advantage of entirely transparently.","PeriodicalId":188691,"journal":{"name":"ACM SIGPLAN Symposium/Workshop on Haskell","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Termination combinators forever\",\"authors\":\"Maximilian Bolingbroke, S. Jones, Dimitrios Vytiniotis\",\"doi\":\"10.1145/2034675.2034680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a library-based approach to constructing termination tests suitable for controlling termination of symbolic methods such as partial evaluation, supercompilation and theorem proving. With our combinators, all termination tests are correct by construction. We show how the library can be designed to embody various optimisations of the termination tests, which the user of the library takes advantage of entirely transparently.\",\"PeriodicalId\":188691,\"journal\":{\"name\":\"ACM SIGPLAN Symposium/Workshop on Haskell\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium/Workshop on Haskell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2034675.2034680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium/Workshop on Haskell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2034675.2034680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We describe a library-based approach to constructing termination tests suitable for controlling termination of symbolic methods such as partial evaluation, supercompilation and theorem proving. With our combinators, all termination tests are correct by construction. We show how the library can be designed to embody various optimisations of the termination tests, which the user of the library takes advantage of entirely transparently.