利用智能静压传动自动控制履带式车辆的运动,实现GPS坐标下的目标指定

S. Kondakov, N. V. Dubrovskiy
{"title":"利用智能静压传动自动控制履带式车辆的运动,实现GPS坐标下的目标指定","authors":"S. Kondakov, N. V. Dubrovskiy","doi":"10.17816/0321-4443-66388","DOIUrl":null,"url":null,"abstract":"The article is devoted to algorithmizing the control of an autonomous vehicle by the example of the caterpillar vehicle with an onboard hydrostatic transmission. The authors developed a mathematical model which has scientific novelty, obtained the results of an analytical solution and a physical experiment that confirmed the reliability of the model and the operability of the proposed algorithm for tractor control in the automatic mode in the global positioning coordinates. The model takes into account the features of the hidostatic drive, made on-board, including mechanical and volume losses. A characteristic feature of the mathematical model is the differential equations for the industrial logic controller and the control mechanism for the inclined washer of the axial-piston adjustable hydrostatic transmission pump and the algebraic equations for conversion of the Cartesian coordinates to the global positioning coordinates. The mathematical model is implemented in the VISSIM programming environment. The object of the investigation is the industrial tractor TM-10 with hydrostatic transmission which is produced by the plant «DST-Ural» in Chelyabinsk. The physical experiment was carried out on the experimental model and showed satisfactory results. The developed algorithm is implemented in the CoDeSys environment for an industrial controller that controls the movement of production tractors. The extended mathematical model allows to assess more accurately of transient processes of the motion in the automatic mode. The formation of the control action via GPS coordinates provides new possibilities during solving the task of positioning the caterpillar vehicle in the open area. The developed algorithm allows to estimate the time which is spent on the formation of commands by microprocessor devices. The conducted investigations allowed to form new consumer properties to the industrial tractor of the plant «DST-Ural», consisting in the appeared possibility of using tractors without an operator in harmful or dangerous conditions for humans.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic control of the movement of the caterpillar vehicle with intelligent hydrostatic transmission for target designation in GPS coordinates\",\"authors\":\"S. Kondakov, N. V. Dubrovskiy\",\"doi\":\"10.17816/0321-4443-66388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article is devoted to algorithmizing the control of an autonomous vehicle by the example of the caterpillar vehicle with an onboard hydrostatic transmission. The authors developed a mathematical model which has scientific novelty, obtained the results of an analytical solution and a physical experiment that confirmed the reliability of the model and the operability of the proposed algorithm for tractor control in the automatic mode in the global positioning coordinates. The model takes into account the features of the hidostatic drive, made on-board, including mechanical and volume losses. A characteristic feature of the mathematical model is the differential equations for the industrial logic controller and the control mechanism for the inclined washer of the axial-piston adjustable hydrostatic transmission pump and the algebraic equations for conversion of the Cartesian coordinates to the global positioning coordinates. The mathematical model is implemented in the VISSIM programming environment. The object of the investigation is the industrial tractor TM-10 with hydrostatic transmission which is produced by the plant «DST-Ural» in Chelyabinsk. The physical experiment was carried out on the experimental model and showed satisfactory results. The developed algorithm is implemented in the CoDeSys environment for an industrial controller that controls the movement of production tractors. The extended mathematical model allows to assess more accurately of transient processes of the motion in the automatic mode. The formation of the control action via GPS coordinates provides new possibilities during solving the task of positioning the caterpillar vehicle in the open area. The developed algorithm allows to estimate the time which is spent on the formation of commands by microprocessor devices. The conducted investigations allowed to form new consumer properties to the industrial tractor of the plant «DST-Ural», consisting in the appeared possibility of using tractors without an operator in harmful or dangerous conditions for humans.\",\"PeriodicalId\":136662,\"journal\":{\"name\":\"Traktory i sel hozmashiny\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traktory i sel hozmashiny\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/0321-4443-66388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traktory i sel hozmashiny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/0321-4443-66388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文以履带式车辆为例,研究了自动驾驶车辆的控制算法。建立了具有科学新颖性的数学模型,并通过解析解和物理实验验证了模型的可靠性和所提算法在全球定位坐标下自动模式下拖拉机控制的可操作性。该模型考虑了机载静静驱动的特点,包括机械和体积损失。该数学模型的一个特点是工业逻辑控制器和轴向柱塞式可调静压传动泵倾斜垫圈控制机构的微分方程以及将笛卡尔坐标转换为全局定位坐标的代数方程。数学模型在VISSIM编程环境下实现。调查的对象是车里雅宾斯克的“DST-Ural”工厂生产的带有静压传动的工业拖拉机TM-10。在实验模型上进行了物理实验,取得了满意的结果。开发的算法在CoDeSys环境中实现,用于控制生产拖拉机的运动的工业控制器。扩展的数学模型可以更准确地评估运动在自动模式下的瞬态过程。通过GPS坐标形成的控制动作为解决履带式车辆在开阔区域的定位任务提供了新的可能性。所开发的算法可以估计微处理器设备形成命令所花费的时间。所进行的调查使“DST-Ural”工厂的工业拖拉机形成了新的消费者属性,包括在没有操作员的情况下在对人类有害或危险的条件下使用拖拉机的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic control of the movement of the caterpillar vehicle with intelligent hydrostatic transmission for target designation in GPS coordinates
The article is devoted to algorithmizing the control of an autonomous vehicle by the example of the caterpillar vehicle with an onboard hydrostatic transmission. The authors developed a mathematical model which has scientific novelty, obtained the results of an analytical solution and a physical experiment that confirmed the reliability of the model and the operability of the proposed algorithm for tractor control in the automatic mode in the global positioning coordinates. The model takes into account the features of the hidostatic drive, made on-board, including mechanical and volume losses. A characteristic feature of the mathematical model is the differential equations for the industrial logic controller and the control mechanism for the inclined washer of the axial-piston adjustable hydrostatic transmission pump and the algebraic equations for conversion of the Cartesian coordinates to the global positioning coordinates. The mathematical model is implemented in the VISSIM programming environment. The object of the investigation is the industrial tractor TM-10 with hydrostatic transmission which is produced by the plant «DST-Ural» in Chelyabinsk. The physical experiment was carried out on the experimental model and showed satisfactory results. The developed algorithm is implemented in the CoDeSys environment for an industrial controller that controls the movement of production tractors. The extended mathematical model allows to assess more accurately of transient processes of the motion in the automatic mode. The formation of the control action via GPS coordinates provides new possibilities during solving the task of positioning the caterpillar vehicle in the open area. The developed algorithm allows to estimate the time which is spent on the formation of commands by microprocessor devices. The conducted investigations allowed to form new consumer properties to the industrial tractor of the plant «DST-Ural», consisting in the appeared possibility of using tractors without an operator in harmful or dangerous conditions for humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physical and chemical analysis of watered engine oil Results of the simulation of tracked vehicles ride considering the interaction with a deformable road Justification of the design parameters of the blade of the rotary working body of the solid fertilizer spreader The Method of Determination of Properties of Air Springs with Two Pressure Stages and Counterpressure Experimental assessment of the temperature state of tractor diesel pistons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1