{"title":"分离非平稳信号源的网络","authors":"K. Matsuoka, M. Kawamoto","doi":"10.1109/IMTC.1994.352154","DOIUrl":null,"url":null,"abstract":"This paper proposes a neural network that recovers the original random signals from their linear mixtures observed by the same number of sensors. The network acquires the function by a learning process without using any particular information about the statistical properties of the sources and the coefficients of the linear transformation, except the assumption that the source signals are statistically independent and nonstationary. The adaptation rule is derived from a steepest descent minimization of a time-dependent cost function that takes the minimum only when the network outputs are uncorrelated with each other.<<ETX>>","PeriodicalId":231484,"journal":{"name":"Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (Cat. No.94CH3424-9)","volume":"66 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Networks for separation of nonstationary signal sources\",\"authors\":\"K. Matsuoka, M. Kawamoto\",\"doi\":\"10.1109/IMTC.1994.352154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a neural network that recovers the original random signals from their linear mixtures observed by the same number of sensors. The network acquires the function by a learning process without using any particular information about the statistical properties of the sources and the coefficients of the linear transformation, except the assumption that the source signals are statistically independent and nonstationary. The adaptation rule is derived from a steepest descent minimization of a time-dependent cost function that takes the minimum only when the network outputs are uncorrelated with each other.<<ETX>>\",\"PeriodicalId\":231484,\"journal\":{\"name\":\"Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (Cat. No.94CH3424-9)\",\"volume\":\"66 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (Cat. No.94CH3424-9)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMTC.1994.352154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (Cat. No.94CH3424-9)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.1994.352154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种神经网络,可以从相同数量的传感器观察到的线性混合随机信号中恢复原始随机信号。除了假设源信号是统计独立和非平稳的,网络通过学习过程获得函数,而不使用任何关于源的统计特性和线性变换系数的特定信息。自适应规则来自于依赖于时间的代价函数的最陡下降最小化,该函数只有在网络输出彼此不相关时才取最小值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Networks for separation of nonstationary signal sources
This paper proposes a neural network that recovers the original random signals from their linear mixtures observed by the same number of sensors. The network acquires the function by a learning process without using any particular information about the statistical properties of the sources and the coefficients of the linear transformation, except the assumption that the source signals are statistically independent and nonstationary. The adaptation rule is derived from a steepest descent minimization of a time-dependent cost function that takes the minimum only when the network outputs are uncorrelated with each other.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Definition and analysis of an electronic device for synchronous circular sampling of locally periodic signals An optical instrumentation using dual sensor-dummy against noises Curvisensors for inside and outside robot arms A quartz crystal microbalance-type odor sensor using PVC-blended lipid membrane Locally mounted process gas analyzing system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1