改进性能的WTTE-RNN变体分析

Rory Cawley, John Burns
{"title":"改进性能的WTTE-RNN变体分析","authors":"Rory Cawley, John Burns","doi":"10.5121/MLAIJ.2019.6103","DOIUrl":null,"url":null,"abstract":"Businesses typically have assets such as machinery, electronics or their customers. These assets share a common trait in that at some stage they will fail or, in the case of customers, they will churn. Knowing when and where to focus limited resources is a key area of concern for businesses. A prediction model called the WTTE-RNN was shown to be effective for predicting the time to event for topics such as machine failure. The purpose of this research is to identify neural network architecture variants of the WTTE-RNN model that have improved performance. The research results on these WTTE-RNN model variant would be useful in the application of the model.","PeriodicalId":347528,"journal":{"name":"Machine Learning and Applications: An International Journal","volume":"7 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of WTTE-RNN Variants that Improve Performance\",\"authors\":\"Rory Cawley, John Burns\",\"doi\":\"10.5121/MLAIJ.2019.6103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Businesses typically have assets such as machinery, electronics or their customers. These assets share a common trait in that at some stage they will fail or, in the case of customers, they will churn. Knowing when and where to focus limited resources is a key area of concern for businesses. A prediction model called the WTTE-RNN was shown to be effective for predicting the time to event for topics such as machine failure. The purpose of this research is to identify neural network architecture variants of the WTTE-RNN model that have improved performance. The research results on these WTTE-RNN model variant would be useful in the application of the model.\",\"PeriodicalId\":347528,\"journal\":{\"name\":\"Machine Learning and Applications: An International Journal\",\"volume\":\"7 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning and Applications: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/MLAIJ.2019.6103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning and Applications: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/MLAIJ.2019.6103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

企业通常拥有机械、电子设备或客户等资产。这些资产有一个共同的特点,即在某个阶段它们会失败,或者在客户的情况下,它们会流失。知道何时何地集中有限的资源是企业关注的一个关键领域。一种名为WTTE-RNN的预测模型被证明可以有效地预测诸如机器故障等主题的事件发生时间。本研究的目的是识别具有改进性能的WTTE-RNN模型的神经网络架构变体。这些WTTE-RNN模型变体的研究成果对模型的应用具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of WTTE-RNN Variants that Improve Performance
Businesses typically have assets such as machinery, electronics or their customers. These assets share a common trait in that at some stage they will fail or, in the case of customers, they will churn. Knowing when and where to focus limited resources is a key area of concern for businesses. A prediction model called the WTTE-RNN was shown to be effective for predicting the time to event for topics such as machine failure. The purpose of this research is to identify neural network architecture variants of the WTTE-RNN model that have improved performance. The research results on these WTTE-RNN model variant would be useful in the application of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Machine Learning Method for Prediction of Yogurt Quality and Consumers Preferencesusing Sensory Attributes and Image Processing Techniques Automatic Spectral Classification of Stars using Machine Learning: An Approach based on the use of Unbalanced Data Ai_Birder: Using Artificial Intelligence and Deep Learning to Create a Mobile Application that Automates Bird Classification DSAGLSTM-DTA: Prediction of Drug-Target Affinity using Dual Self-Attention and LSTM Multilingual Speech to Text using Deep Learning based on MFCC Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1