基于服务器端性能计数器的并行I/O表征

S. E. Sayed, M. Bolten, D. Pleiter, W. Frings
{"title":"基于服务器端性能计数器的并行I/O表征","authors":"S. E. Sayed, M. Bolten, D. Pleiter, W. Frings","doi":"10.1109/PDSW-DISCS.2016.006","DOIUrl":null,"url":null,"abstract":"Provisioning of high I/O capabilities for high-end HPC architectures is generally considered a challenge. A good understanding of the characteristics of the utilisation of modern I/O systems can help address the increasing performance gap between I/O and computation. In this paper we present results from an analysis of server-side performance counters that had been collected for multiple years on a parallel file system attached to a peta-scale Blue Gene/P system. We developed a set of general performance characterisation metrics, which we applied to this large dataset.","PeriodicalId":375550,"journal":{"name":"2016 1st Joint International Workshop on Parallel Data Storage and data Intensive Scalable Computing Systems (PDSW-DISCS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel I/O Characterisation Based on Server-Side Performance Counters\",\"authors\":\"S. E. Sayed, M. Bolten, D. Pleiter, W. Frings\",\"doi\":\"10.1109/PDSW-DISCS.2016.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Provisioning of high I/O capabilities for high-end HPC architectures is generally considered a challenge. A good understanding of the characteristics of the utilisation of modern I/O systems can help address the increasing performance gap between I/O and computation. In this paper we present results from an analysis of server-side performance counters that had been collected for multiple years on a parallel file system attached to a peta-scale Blue Gene/P system. We developed a set of general performance characterisation metrics, which we applied to this large dataset.\",\"PeriodicalId\":375550,\"journal\":{\"name\":\"2016 1st Joint International Workshop on Parallel Data Storage and data Intensive Scalable Computing Systems (PDSW-DISCS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 1st Joint International Workshop on Parallel Data Storage and data Intensive Scalable Computing Systems (PDSW-DISCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDSW-DISCS.2016.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 1st Joint International Workshop on Parallel Data Storage and data Intensive Scalable Computing Systems (PDSW-DISCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDSW-DISCS.2016.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为高端HPC架构提供高I/O能力通常被认为是一个挑战。很好地理解现代I/O系统的使用特征可以帮助解决I/O和计算之间日益增大的性能差距。在本文中,我们展示了对服务器端性能计数器的分析结果,这些计数器是在附属于一个千兆级Blue Gene/P系统的并行文件系统上收集多年的。我们开发了一套通用的性能表征指标,并将其应用于这个大型数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel I/O Characterisation Based on Server-Side Performance Counters
Provisioning of high I/O capabilities for high-end HPC architectures is generally considered a challenge. A good understanding of the characteristics of the utilisation of modern I/O systems can help address the increasing performance gap between I/O and computation. In this paper we present results from an analysis of server-side performance counters that had been collected for multiple years on a parallel file system attached to a peta-scale Blue Gene/P system. We developed a set of general performance characterisation metrics, which we applied to this large dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Klimatic: A Virtual Data Lake for Harvesting and Distribution of Geospatial Data Towards Energy Efficient Data Management in HPC: The Open Ethernet Drive Approach FatMan vs. LittleBoy: Scaling Up Linear Algebraic Operations in Scale-Out Data Platforms A Bloom Filter Based Scalable Data Integrity Check Tool for Large-Scale Dataset Can Non-volatile Memory Benefit MapReduce Applications on HPC Clusters?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1