一种改进的入侵检测模糊数据挖掘算法

German Florez, S. Bridges, R. Vaughn
{"title":"一种改进的入侵检测模糊数据挖掘算法","authors":"German Florez, S. Bridges, R. Vaughn","doi":"10.1109/NAFIPS.2002.1018103","DOIUrl":null,"url":null,"abstract":"We have been using fuzzy data mining techniques to extract patterns that represent normal behavior for intrusion detection. We describe a variety of modifications that we have made to the data mining algorithms in order to improve accuracy and efficiency. We use sets of fuzzy association rules that are mined from network audit data as models of \"normal behavior.\" To detect anomalous behavior, we generate fuzzy association rules from new audit data and compute the similarity with sets mined from \"normal\" data. If the similarity values are below a threshold value, an alarm is issued. We describe an algorithm for computing fuzzy association rules based on Borgelt's (2001) prefix trees, modifications to the computation of support and confidence of fuzzy rules, a new method for computing the similarity of two fuzzy rule sets, and feature selection and optimization with genetic algorithms. Experimental results demonstrate that we can achieve better running time and accuracy with these modifications.","PeriodicalId":348314,"journal":{"name":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":"{\"title\":\"An improved algorithm for fuzzy data mining for intrusion detection\",\"authors\":\"German Florez, S. Bridges, R. Vaughn\",\"doi\":\"10.1109/NAFIPS.2002.1018103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have been using fuzzy data mining techniques to extract patterns that represent normal behavior for intrusion detection. We describe a variety of modifications that we have made to the data mining algorithms in order to improve accuracy and efficiency. We use sets of fuzzy association rules that are mined from network audit data as models of \\\"normal behavior.\\\" To detect anomalous behavior, we generate fuzzy association rules from new audit data and compute the similarity with sets mined from \\\"normal\\\" data. If the similarity values are below a threshold value, an alarm is issued. We describe an algorithm for computing fuzzy association rules based on Borgelt's (2001) prefix trees, modifications to the computation of support and confidence of fuzzy rules, a new method for computing the similarity of two fuzzy rule sets, and feature selection and optimization with genetic algorithms. Experimental results demonstrate that we can achieve better running time and accuracy with these modifications.\",\"PeriodicalId\":348314,\"journal\":{\"name\":\"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"127\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2002.1018103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2002.1018103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

摘要

我们一直在使用模糊数据挖掘技术来提取代表入侵检测正常行为的模式。我们描述了我们对数据挖掘算法所做的各种修改,以提高准确性和效率。我们使用从网络审计数据中挖掘的模糊关联规则集作为“正常行为”模型。为了检测异常行为,我们从新的审计数据中生成模糊关联规则,并计算与从“正常”数据中挖掘的集的相似度。如果相似度低于阈值,则产生告警。本文介绍了一种基于Borgelt(2001)前缀树的模糊关联规则计算算法,对模糊规则支持度和置信度计算的改进,计算两个模糊规则集相似度的新方法,以及用遗传算法进行特征选择和优化。实验结果表明,这些改进可以获得更好的运行时间和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved algorithm for fuzzy data mining for intrusion detection
We have been using fuzzy data mining techniques to extract patterns that represent normal behavior for intrusion detection. We describe a variety of modifications that we have made to the data mining algorithms in order to improve accuracy and efficiency. We use sets of fuzzy association rules that are mined from network audit data as models of "normal behavior." To detect anomalous behavior, we generate fuzzy association rules from new audit data and compute the similarity with sets mined from "normal" data. If the similarity values are below a threshold value, an alarm is issued. We describe an algorithm for computing fuzzy association rules based on Borgelt's (2001) prefix trees, modifications to the computation of support and confidence of fuzzy rules, a new method for computing the similarity of two fuzzy rule sets, and feature selection and optimization with genetic algorithms. Experimental results demonstrate that we can achieve better running time and accuracy with these modifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy linear clustering for fabric selection from online database Fuzzy clustering in vision recognition applied in NAVI Fuzzy functions to select an optimal action in decision theory Fuzzy systems and soft O.R Conceptual fuzzy sets-based navigation system for Yahoo!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1