眨眼:脑电信号中眨眼检测的全自动无监督算法

Mohit Agarwal, Raghupathy Sivakumar
{"title":"眨眼:脑电信号中眨眼检测的全自动无监督算法","authors":"Mohit Agarwal, Raghupathy Sivakumar","doi":"10.1109/ALLERTON.2019.8919795","DOIUrl":null,"url":null,"abstract":"Eye-blinks are known to substantially contaminate EEG signals, and thereby severely impact the decoding of EEG signals in various medical and scientific applications. In this work, we consider the problem of eye-blink detection that can then be employed to reliably remove eye-blinks from EEG signals. We propose a fully automated and unsupervised eyeblink detection algorithm, Blink that self-learns user-specific brainwave profiles for eye-blinks. Hence, Blink does away with any user training or manual inspection requirements. Blink functions on a single channel EEG, and is capable of estimating the start and end timestamps of eye-blinks in a precise manner. We collect four different eye-blink datasets and annotate 2300+ eye-blinks to evaluate the robustness performance of Blink across headsets (OpenBCI and Muse), eye-blink types (voluntary and involuntary), and various user activities (watching a video, reading an article, and attending to an external stimulation). The Blink algorithm performs consistently with an accuracy of over 98% for all the tasks with an average precision of 0.934. The source code and annotated datasets are released publicly for reproducibility and further research. To the best of our knowledge, this is the first ever annotated eye-blink EEG dataset released in the public domain.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"05 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Blink: A Fully Automated Unsupervised Algorithm for Eye-Blink Detection in EEG Signals\",\"authors\":\"Mohit Agarwal, Raghupathy Sivakumar\",\"doi\":\"10.1109/ALLERTON.2019.8919795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eye-blinks are known to substantially contaminate EEG signals, and thereby severely impact the decoding of EEG signals in various medical and scientific applications. In this work, we consider the problem of eye-blink detection that can then be employed to reliably remove eye-blinks from EEG signals. We propose a fully automated and unsupervised eyeblink detection algorithm, Blink that self-learns user-specific brainwave profiles for eye-blinks. Hence, Blink does away with any user training or manual inspection requirements. Blink functions on a single channel EEG, and is capable of estimating the start and end timestamps of eye-blinks in a precise manner. We collect four different eye-blink datasets and annotate 2300+ eye-blinks to evaluate the robustness performance of Blink across headsets (OpenBCI and Muse), eye-blink types (voluntary and involuntary), and various user activities (watching a video, reading an article, and attending to an external stimulation). The Blink algorithm performs consistently with an accuracy of over 98% for all the tasks with an average precision of 0.934. The source code and annotated datasets are released publicly for reproducibility and further research. To the best of our knowledge, this is the first ever annotated eye-blink EEG dataset released in the public domain.\",\"PeriodicalId\":120479,\"journal\":{\"name\":\"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"05 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2019.8919795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

众所周知,眨眼会严重污染脑电图信号,从而严重影响各种医疗和科学应用中脑电图信号的解码。在这项工作中,我们考虑了眨眼检测问题,然后可以用来可靠地从脑电图信号中去除眨眼。我们提出了一种完全自动化和无监督的眨眼检测算法,Blink,它可以自我学习用户特定的眨眼脑波特征。因此,Blink不需要任何用户培训或人工检查要求。眨眼在单通道脑电图上工作,能够精确地估计眨眼的开始和结束时间戳。我们收集了四种不同的眨眼数据集,并注释了2300多次眨眼,以评估Blink在不同耳机(OpenBCI和Muse)、眨眼类型(自愿和非自愿)和各种用户活动(观看视频、阅读文章和参加外部刺激)上的鲁棒性表现。Blink算法对所有任务的准确率均在98%以上,平均精度为0.934。源代码和带注释的数据集公开发布,以供再现性和进一步研究。据我们所知,这是有史以来第一个在公共领域发布的带注释的眨眼脑电图数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blink: A Fully Automated Unsupervised Algorithm for Eye-Blink Detection in EEG Signals
Eye-blinks are known to substantially contaminate EEG signals, and thereby severely impact the decoding of EEG signals in various medical and scientific applications. In this work, we consider the problem of eye-blink detection that can then be employed to reliably remove eye-blinks from EEG signals. We propose a fully automated and unsupervised eyeblink detection algorithm, Blink that self-learns user-specific brainwave profiles for eye-blinks. Hence, Blink does away with any user training or manual inspection requirements. Blink functions on a single channel EEG, and is capable of estimating the start and end timestamps of eye-blinks in a precise manner. We collect four different eye-blink datasets and annotate 2300+ eye-blinks to evaluate the robustness performance of Blink across headsets (OpenBCI and Muse), eye-blink types (voluntary and involuntary), and various user activities (watching a video, reading an article, and attending to an external stimulation). The Blink algorithm performs consistently with an accuracy of over 98% for all the tasks with an average precision of 0.934. The source code and annotated datasets are released publicly for reproducibility and further research. To the best of our knowledge, this is the first ever annotated eye-blink EEG dataset released in the public domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Sequential Gradient-Based Multiple Access for Distributed Learning over Fading Channels Scheduling Policies for Minimizing Job Migration and Server Running Costs for Cloud Computing Platforms Explicit Low-complexity Codes for Multiple Access Channel Resolvability Byzantine Fault-Tolerant Parallelized Stochastic Gradient Descent for Linear Regression Deep Reinforcement Learning Based Power Control for Wireless Multicast Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1