基于Lyapunov理论的人脸识别神经网络方法

L. Ang, K. Lim, K. Seng, Siew Wen Chin
{"title":"基于Lyapunov理论的人脸识别神经网络方法","authors":"L. Ang, K. Lim, K. Seng, Siew Wen Chin","doi":"10.4018/978-1-60566-798-0.ch002","DOIUrl":null,"url":null,"abstract":"This chapter presents a new face recognition system comprising of feature extraction and the Lyapunov theory-based neural network. It first gives the definition of face recognition which can be broadly divided into (i) feature-based approaches, and (ii) holistic approaches. A general review of both approaches will be given in the chapter. Face features extraction techniques including Principal Component Analysis (PCA) and Fisher’s Linear Discriminant (FLD) are discussed. Multilayered neural network (MLNN) and Radial Basis Function neural network (RBF NN) will be reviewed. Two Lyapunov theory-based neural classifiers: (i) Lyapunov theory-based RBF NN, and (ii) Lyapunov theory-based MLNN classifiers are designed based on the Lyapunov stability theory. The design details will be discussed in the chapter. Experiments are performed on two benchmark databases, ORL and Yale. Comparisons with some of the existing conventional techniques are given. Simulation results have shown good performance for face recognition using the Lyapunov theory-based neural network systems. DOI: 10.4018/978-1-60566-798-0.ch002","PeriodicalId":325405,"journal":{"name":"Intelligent Systems for Automated Learning and Adaptation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Lyapunov Theory-Based Neural Network Approach for Face Recognition\",\"authors\":\"L. Ang, K. Lim, K. Seng, Siew Wen Chin\",\"doi\":\"10.4018/978-1-60566-798-0.ch002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter presents a new face recognition system comprising of feature extraction and the Lyapunov theory-based neural network. It first gives the definition of face recognition which can be broadly divided into (i) feature-based approaches, and (ii) holistic approaches. A general review of both approaches will be given in the chapter. Face features extraction techniques including Principal Component Analysis (PCA) and Fisher’s Linear Discriminant (FLD) are discussed. Multilayered neural network (MLNN) and Radial Basis Function neural network (RBF NN) will be reviewed. Two Lyapunov theory-based neural classifiers: (i) Lyapunov theory-based RBF NN, and (ii) Lyapunov theory-based MLNN classifiers are designed based on the Lyapunov stability theory. The design details will be discussed in the chapter. Experiments are performed on two benchmark databases, ORL and Yale. Comparisons with some of the existing conventional techniques are given. Simulation results have shown good performance for face recognition using the Lyapunov theory-based neural network systems. DOI: 10.4018/978-1-60566-798-0.ch002\",\"PeriodicalId\":325405,\"journal\":{\"name\":\"Intelligent Systems for Automated Learning and Adaptation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems for Automated Learning and Adaptation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-60566-798-0.ch002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems for Automated Learning and Adaptation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-60566-798-0.ch002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本章提出了一种新的人脸识别系统,该系统由特征提取和基于李雅普诺夫理论的神经网络组成。首先给出了人脸识别的定义,可以大致分为(i)基于特征的方法和(ii)整体方法。本章将对这两种方法进行一般性审查。讨论了人脸特征提取技术,包括主成分分析(PCA)和Fisher线性判别(FLD)。对多层神经网络(MLNN)和径向基函数神经网络(RBF NN)进行了综述。两种基于Lyapunov理论的神经分类器:(i)基于Lyapunov理论的RBF神经网络,(ii)基于Lyapunov稳定性理论设计了基于Lyapunov理论的MLNN分类器。设计细节将在本章中讨论。在ORL和Yale两个基准数据库上进行了实验。并与现有的一些常规技术进行了比较。仿真结果表明,基于李雅普诺夫理论的神经网络系统具有良好的人脸识别性能。DOI: 10.4018 / 978 - 1 - 60566 - 798 - 0. - ch002
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Lyapunov Theory-Based Neural Network Approach for Face Recognition
This chapter presents a new face recognition system comprising of feature extraction and the Lyapunov theory-based neural network. It first gives the definition of face recognition which can be broadly divided into (i) feature-based approaches, and (ii) holistic approaches. A general review of both approaches will be given in the chapter. Face features extraction techniques including Principal Component Analysis (PCA) and Fisher’s Linear Discriminant (FLD) are discussed. Multilayered neural network (MLNN) and Radial Basis Function neural network (RBF NN) will be reviewed. Two Lyapunov theory-based neural classifiers: (i) Lyapunov theory-based RBF NN, and (ii) Lyapunov theory-based MLNN classifiers are designed based on the Lyapunov stability theory. The design details will be discussed in the chapter. Experiments are performed on two benchmark databases, ORL and Yale. Comparisons with some of the existing conventional techniques are given. Simulation results have shown good performance for face recognition using the Lyapunov theory-based neural network systems. DOI: 10.4018/978-1-60566-798-0.ch002
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Review on Evolutionary Prototype Selection Efficient Training Algorithm for Neuro-Fuzzy Network and its Application to Nonlinear Sensor Characteristic Linearization A Self-Organizing Neural Network to Approach Novelty Detection Synthesis of Analog Circuits by Genetic Algorithms and their Optimization by Particle Swarm Optimization A Performance Comparison between Efficiency and Pheromone Approaches in Dynamic Manufacturing Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1